Preconditioned Conjugate Gradient
Contents
Preconditioned Conjugate Gradient¶
This example evaluates the performance of Preconditioned Conjugate Gradient
(PCG) with a sparse matrix A
built by 7-point stencil. The kernel records
the start
and end
of PCG by tsc counter. In addition the tsc counters
of all PEs are not synchronized in the beginning. To avoid the timing variation
among those PEs, sync()
synchronizes all PEs and samples the reference clock.
The Jacobi preconditioner is adopted because it the simplest one for stencil.
The coefficient of the center is the diagonal of the matrix A
.
There are two implementations, kernel.csl
and kernel_pcg.csl
compiled
by run.py
and run_pcg.py
respectively. Both kernels define host-callable
functions f_sync()
, f_tic()
and f_toc()
in order to synchronize the
PEs and record the timing.
The kernel kernel.csl
also defines a couple of host-callable functions to
implement CG algorithm, including
spmv()
: computeA*x
andA*p
dot()
: computedot(p,w)
,dot(r,z)
anddot(r,r)
others: update
x
,p
,r
andz
The kernel kernel_pcg.csl
defines a host-callable function f_pcg
which
implements the PCG on the WSE. The f_pcg
introduces a state machine to call a
sequence of spmv()
, dot()
and others. Such state machine simply realizes
the algorithm in run.py
.
The kernel allreduce/pe.csl
performs a reduction over the whole rectangle
to synchronize the PEs, then the bottom-right PE sends a signal to other PEs
to sample the reference clock.
The kernel stencil_3d_7pts/pe.csl
performs a matrix-vector product (spmv)
where the matrix has 7 diagonals corresponding to 7 point stencil. The stencil
coefficients can vary per PE, but must be the same for the local vector. The
user can change the coefficients based on the boundary condition or curvilinear
coordinate transformation.
The script run.py
or run_pcg.py
has the following parameters:
-k=<int>
specifies the maximum size of local vector.--zDim=<int>
specifies how many elements per PE are computed.--max-ite=<int>
specifies number of iterations in power method.--channels=<int>
specifies the number of I/O channels, no bigger than 16.
The tic()
samples “time_start” and toc()
samples “time_end”. The
sync()
samples “time_ref” which is used to adjust “time_start” and
“time_end”. The elapsed time (unit: cycles) is measured by
cycles_send = max(time_end) - min(time_start)
The overall runtime (us) is computed via the following formula
time_send = (cycles_send / 0.85) * 1.e-3 us
Note that the allreduce
and stencil_3d_7pts
modules used
in this code are identical to those used in 3D 7-Point Stencil SpMV.
layout.csl¶
// color map: memcpy + allreduce + stencil
//
// color var color var color var color var
// 0 C0 9 18 EN_REDUCE_2 27 reserved (memcpy)
// 1 C1 10 19 EN_REDUCE_3 28 reserved (memcpy)
// 2 C2 11 20 EN_REDUCE_4 29 reserved (memcpy)
// 3 C3 12 21 reserved (memcpy) 30 reserved (memcpy)
// 4 C4 13 22 reserved (memcpy) 31 reserved
// 5 C5 14 EN_STENCIL_1 23 reserved (memcpy) 32
// 6 C6 15 EN_STENCIL_2 24 33
// 7 C7 16 EN_STENCIL_3 25 34
// 8 C8 17 EN_REDUCE_1 26 35
//
// c0,c1,c2,c3,c4,c5,c6,c7 are internal colors of 7-point stencil
param C0_ID: i16;
param C1_ID: i16;
param C2_ID: i16;
param C3_ID: i16;
param C4_ID: i16;
param C5_ID: i16;
param C6_ID: i16;
param C7_ID: i16;
// c8 is an internal color of allreduce
param C8_ID: i16;
param MAX_ZDIM: i16; // maximum size of local vector x and y
param width: i16 ; // width of the core
param height: i16 ; // height of the core
param BLOCK_SIZE: i16; // size of temporary buffers for communication
const C0: color = @get_color(C0_ID);
const C1: color = @get_color(C1_ID);
const C2: color = @get_color(C2_ID);
const C3: color = @get_color(C3_ID);
const C4: color = @get_color(C4_ID);
const C5: color = @get_color(C5_ID);
const C6: color = @get_color(C6_ID);
const C7: color = @get_color(C7_ID);
const C8: color = @get_color(C8_ID);
// entrypoints of 7-point stenil
const EN_STENCIL_1: local_task_id = @get_local_task_id(14);
const EN_STENCIL_2: local_task_id = @get_local_task_id(15);
const EN_STENCIL_3: local_task_id = @get_local_task_id(16);
// entrypoints of allreduce
const EN_REDUCE_1: local_task_id = @get_local_task_id(17);
const EN_REDUCE_2: local_task_id = @get_local_task_id(18);
const EN_REDUCE_3: local_task_id = @get_local_task_id(19);
const EN_REDUCE_4: local_task_id = @get_local_task_id(20);
const stencil = @import_module( "../../csl-libs/stencil_3d_7pts/layout.csl", .{
.colors = [8]color{C0, C1, C2, C3, C4, C5, C6, C7},
.entrypoints = [3]local_task_id{EN_STENCIL_1, EN_STENCIL_2, EN_STENCIL_3},
.width = width,
.height = height
});
const reduce = @import_module( "../../csl-libs/allreduce/layout.csl", .{
.colors = [1]color{C8},
.entrypoints = [4]local_task_id{EN_REDUCE_1, EN_REDUCE_2, EN_REDUCE_3, EN_REDUCE_4},
.width = width,
.height = height
});
const memcpy = @import_module( "<memcpy/get_params>", .{
.width = width,
.height = height,
});
layout{
@comptime_assert(C0_ID < C1_ID);
@comptime_assert(C1_ID < C2_ID);
@comptime_assert(C2_ID < C3_ID);
@comptime_assert(C3_ID < C4_ID);
@comptime_assert(C4_ID < C5_ID);
@comptime_assert(C5_ID < C6_ID);
@comptime_assert(C6_ID < C7_ID);
@comptime_assert(C7_ID < C8_ID);
// step 1: configure the rectangle which does not include halo
@set_rectangle( width, height );
// step 2: compile csl code for a set of PEx.y and generate out_x_y.elf
// format: @set_tile_code(x, y, code.csl, param_binding);
var py: i16 = 0;
while(py < height) : (py +=1) {
var px: i16 = 0;
while(px < width) : (px +=1) {
const memcpyParams = memcpy.get_params(px);
const stencilParams = stencil.get_params(px, py);
const reduceParams = reduce.get_params(px, py);
var params: comptime_struct = .{
.memcpyParams = memcpyParams,
.reduceParams = reduceParams,
.MAX_ZDIM = MAX_ZDIM,
.BLOCK_SIZE = BLOCK_SIZE,
.stencilParams = stencilParams
};
@set_tile_code(px, py, "kernel.csl", params);
}
}
@export_name("b", [*]f32, true);
@export_name("x", [*]f32, true);
@export_name("stencil_coeff", [*]f32, true);
@export_name("time_buf_u16", [*]u16, true);
@export_name("time_ref", [*]u16, true);
@export_name("rho", [*]f32, true);
@export_name("xi", [*]f32, true);
@export_name("f_enable_timer", fn()void);
@export_name("f_tic", fn()void);
@export_name("f_toc", fn()void);
@export_name("f_memcpy_timestamps", fn()void);
@export_name("f_pcg_init", fn(i16)void);
@export_name("f_spmv_Ax", fn()void);
@export_name("f_residual", fn()void);
@export_name("f_update_z", fn()void);
@export_name("f_update_p", fn(i16)void);
@export_name("f_spmv_Ap", fn()void);
@export_name("f_eta", fn()void);
@export_name("f_update_x_r_rho", fn()void);
@export_name("f_sync", fn()void);
@export_name("f_reference_timestamps", fn()void);
} // end of layout
kernel.csl¶
param memcpyParams: comptime_struct;
param reduceParams: comptime_struct;
param stencilParams: comptime_struct;
param MAX_ZDIM: i16; // size of vector x
param BLOCK_SIZE: i16; // size of temporary buffers for communication
const timestamp = @import_module("<time>");
const math_lib = @import_module("<math>");
const blas_lib = @import_module("blas.csl");
// memcpy module reserves
// - input/output queue 0 and 1
const sys_mod = @import_module( "<memcpy/memcpy>", memcpyParams);
// allreduce uses input queue/output queue 1
const reduce_mod = @import_module( "../../csl-libs/allreduce/pe.csl", @concat_structs(reduceParams, .{
.f_callback = sys_mod.unblock_cmd_stream,
.queues = [1]u16{2},
.dest_dsr_ids = [1]u16{1},
.src0_dsr_ids = [1]u16{1},
.src1_dsr_ids = [1]u16{1}
}));
// output queue cannot overlap input queues
const stencil_mod = @import_module( "../../csl-libs/stencil_3d_7pts/pe.csl", @concat_structs(stencilParams, .{
.f_callback = sys_mod.unblock_cmd_stream,
.input_queues = [4]u16{4, 5, 6, 7},
.output_queues = if (@is_arch("wse3")) [4]u16{4, 5, 6, 7} else [1]u16{3},
.output_ut_id = 3,
.BLOCK_SIZE = BLOCK_SIZE,
.dest_dsr_ids = [2]u16{2,3},
.src0_dsr_ids = [1]u16{2},
.src1_dsr_ids = [2]u16{2,3}
}));
// tsc_size_words = 3
// starting time of H2D/D2H
var tscStartBuffer = @zeros([timestamp.tsc_size_words]u16);
// ending time of H2D/D2H
var tscEndBuffer = @zeros([timestamp.tsc_size_words]u16);
var b = @zeros([MAX_ZDIM]f32); // right-hand-side
var x = @zeros([MAX_ZDIM]f32); // approximated solution
var p = @zeros([MAX_ZDIM]f32); // Krylov space
var w = @zeros([MAX_ZDIM]f32); // w = A * p
var r = @zeros([MAX_ZDIM]f32); // residual
var z = @zeros([MAX_ZDIM]f32); // solve M*z = r
var dot = @zeros([1]f32); // dummy variable for f_sync
var xi = @zeros([1]f32);
var rho = @zeros([1]f32);
var rho_old = @zeros([1]f32);
var eta = @zeros([1]f32);
var beta: f32 = @as(f32,0);
// stencil coefficients are organized as
// {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
//
// The formula is
// c_west * x[i-1][j][k] + c_east * x[i+1][j][k] +
// c_south * x[i][j-1][k] + c_north * x[i][j+1][k] +
// c_bottom * x[i][j][k-1] + c_top * x[i][j][k+1] +
// c_center * x[i][j][k]
var stencil_coeff = @zeros([7]f32);
// invD = 1/c_center
var invD: f32 = @as(f32, 1.0);
// time_buf_u16[0:5] = {tscStartBuffer, tscEndBuffer}
var time_buf_u16 = @zeros([timestamp.tsc_size_words*2]u16);
// reference clock inside allreduce module
var time_ref_u16 = @zeros([timestamp.tsc_size_words]u16);
var ptr_b: [*]f32 = &b;
var ptr_x: [*]f32 = &x;
var ptr_stencil_coeff: [*]f32 = &stencil_coeff;
var ptr_time_buf_u16: [*]u16 = &time_buf_u16;
var ptr_time_ref: [*]u16 = &time_ref_u16;
var ptr_rho: [*]f32 = ρ
var ptr_xi: [*]f32 = ξ
// size of local tensor during the PCG
var n: i16 = 0;
var mem_b_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> b[i] });
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> x[i] });
var mem_r_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r[i] });
var mem_p_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> p[i] });
var mem_w_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> w[i] });
var mem_z_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> z[i] });
fn f_enable_timer() void {
timestamp.enable_tsc();
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_tic() void {
timestamp.get_timestamp(&tscStartBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_toc() void {
timestamp.get_timestamp(&tscEndBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_memcpy_timestamps() void {
time_buf_u16[0] = tscStartBuffer[0];
time_buf_u16[1] = tscStartBuffer[1];
time_buf_u16[2] = tscStartBuffer[2];
time_buf_u16[3] = tscEndBuffer[0];
time_buf_u16[4] = tscEndBuffer[1];
time_buf_u16[5] = tscEndBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
// initialization of PCG
// - setup Jacobi preconditioner
// D = diag(A)
// dii = c_center
// - setup the length of all DSDs
//
fn f_pcg_init(size:i16) void {
// stencil_coeff = {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
invD = math_lib.inv(stencil_coeff[6]);
// setup the size of local tensor
n = size;
// set the length of all DSDs
mem_b_dsd = @set_dsd_length(mem_b_dsd, @bitcast(u16,n));
mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
mem_p_dsd = @set_dsd_length(mem_p_dsd, @bitcast(u16,n));
mem_r_dsd = @set_dsd_length(mem_r_dsd, @bitcast(u16,n));
mem_w_dsd = @set_dsd_length(mem_w_dsd, @bitcast(u16,n));
mem_z_dsd = @set_dsd_length(mem_z_dsd, @bitcast(u16,n));
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
// w = A*x
fn f_spmv_Ax() void {
stencil_mod.spmv(n, &stencil_coeff, &x, &w);
}
// compute r = b - w and xi = |r|^2
// where w = A*x is computed by f_spmv_Ax
fn f_residual() void {
@fsubs(mem_r_dsd, mem_b_dsd, mem_w_dsd);
// compute <r, r> locally
xi[0] = blas_lib.dot(n, &r, &r);
// reduce(|r|^2)
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
// solve M*z = r
// rho = dot(r, z)
fn f_update_z() void {
// z = invD * r
@fmuls(mem_z_dsd, invD, mem_r_dsd);
// rho = dot(r, z)
// compute <r, z> locally
rho[0] = blas_lib.dot(n, &r, &z);
// reduce((r,z))
reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}
// if k is 1
// p = z0
// else
// beta = rho/rho_old
// p = z + beta*p
// end
fn f_update_p(k:i16) void {
if (1 == k){
// p = z0
@fmovs(mem_p_dsd, mem_z_dsd);
}else{
// beta_{k} = (r_{k-1}, z_{k-1})/(r_{k-2}, z_{k-2})
beta = rho[0]/rho_old[0];
// p_{k} = z_{k-1} + beta_{k} * p_{k-1}
@fmacs(mem_p_dsd, mem_z_dsd, mem_p_dsd, beta);
}
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
// w = A*p
fn f_spmv_Ap() void {
stencil_mod.spmv(n, &stencil_coeff, &p, &w);
}
// eta = np.dot(p,w)
fn f_eta() void {
// compute <w, p> locally
eta[0] = blas_lib.dot(n, &w, &p);
// reduce(<w,p>)
reduce_mod.allreduce(1, &eta, reduce_mod.TYPE_BINARY_OP.ADD);
}
// update x, r and rho
// ---
// alpha = rho/eta
// x = x + alpha * p
// r = r - alpha * w where w = A*p
// rho_old = rho
// xi = np.dot(r,r)
// ---
//
// w must be computed by f_spmv_Ap()
// eta must be computed by f_eta()
//
fn f_update_x_r_rho() void {
var alpha: f32 = rho[0]/eta[0];
var alpha_minus: f32 = -alpha;
// x_{k} = x_{k-1} + alpha_{k} * p_{k}
// x = x + alpha * p
@fmacs(mem_x_dsd, mem_x_dsd, mem_p_dsd, alpha);
// r_{k} = r_{k-1} - alpha_{k} * A*p_{k}
// r = r - alpha * w
@fmacs(mem_r_dsd, mem_r_dsd, mem_w_dsd, alpha_minus);
// update rho
rho_old[0] = rho[0];
// xi = np.dot(r,r)
// compute <r, r> locally
xi[0] = blas_lib.dot(n, &r, &r);
// reduce(|r|^2)
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
fn f_sync() void {
reduce_mod.allreduce(1, &dot, reduce_mod.TYPE_BINARY_OP.ADD);
}
fn f_reference_timestamps() void {
time_ref_u16[0] = reduce_mod.tscRefBuffer[0];
time_ref_u16[1] = reduce_mod.tscRefBuffer[1];
time_ref_u16[2] = reduce_mod.tscRefBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
comptime {
@export_symbol(ptr_b, "b");
@export_symbol(ptr_x, "x");
@export_symbol(ptr_stencil_coeff, "stencil_coeff");
@export_symbol(ptr_time_buf_u16, "time_buf_u16");
@export_symbol(ptr_time_ref, "time_ref");
@export_symbol(ptr_rho, "rho");
@export_symbol(ptr_xi, "xi");
}
comptime{
@export_symbol(f_enable_timer);
@export_symbol(f_tic);
@export_symbol(f_toc);
@export_symbol(f_memcpy_timestamps);
@export_symbol(f_pcg_init);
@export_symbol(f_spmv_Ax);
@export_symbol(f_residual);
@export_symbol(f_update_z);
@export_symbol(f_update_p);
@export_symbol(f_spmv_Ap);
@export_symbol(f_eta);
@export_symbol(f_update_x_r_rho);
@export_symbol(f_sync);
@export_symbol(f_reference_timestamps);
}
blas.csl¶
const math_lib = @import_module("<math>");
const dummy = @zeros([1]i16);
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> dummy[i] });
var mem_y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> dummy[i] });
// (alpha, inv_alpha) = approx(x) approximates x by positive alpha such that
// x = alpha * (x/alpha)
// where alpha = 2^(exp) and (x/alpha) has no precision loss.
//
// If x is a normal number, |x| = 2^(exp) * r, then alpha = 2^(exp)
//
// The purpose of this approximation is for nrm2(x).
// nrm2(x) can hit overflow if we just do square-sum.
// The simple workaround is to square-sum of x/max(x).
// However the division is very expensive, about 50 cycles.
// We just need a number alpha close to max(x) such that x/alpha = O(1).
// The cost of approx is about 11 instructions, much cheaper than div.
//
// Assume x = sign * 2^(E-127) * mantissa, "approx" handles the following
// four cases:
//
// case 1: x is a normal number
// 0 < E < 255
// x is normal
// x = sign * 2^(E-127) * 1.b22b21... b1b0
// min(x) = 0x0080 0000
// = 2^(-126) = 1.1754943508 x 10^(-38)
// max(x) = 0x7f7f ffff
// = 2^127 x (2 - 2^(-23)) = 3.4028234664 * 10^38
//
// case 2: x is a subnormal number
// E = 0 and mantissa > 0
// x = sign * 2^(-127) * b22.b21... b1b0
// = sign * 2^(-126) * 0.b22b21... b1b0
// min(x) = 0x000 0001
// = 2^(-126) x 2^(-23) = 2^(-149) = 1.4*10^(-45)
// max(x) = 007f ffff
// = 2^(-126) x (1 - 2^(-23)) = 1.17 x 10^(-38)
//
// case 3: x = 0
// E = 0 and mantissa = 0
//
// case 4: x = inf or nan
// inf: E = 255 and mantissa = 0
// nan: E = 255 and mantissa > 0
//
// Example 1: x = 14.0
// alpha_u32 = 0x41000000
// inv_alpha_u32 = 0x3e000000
// alpha = 8.
// inv_alpha = 0.125
// Example 2: x = 0.15625
// alpha_u32 = 0x3e000000
// inv_alpha_u32 = 0x41000000
// alpha = 0.125
// inv_alpha = 8.0
// Example 3: x = 1.e-43
// alpha_u32 = 0x800000
// inv_alpha_u32 = 0x7e800000
// alpha = 1.1754943508222875e-38
// inv_alpha = 8.507059173023462e+37
// Example 4: x = 1.0/0.0 (np.float32(np.inf))
// alpha_u32 = 0x3f800000
// inv_alpha_u32 = 0x3f800000
// alpha = 1.0
// inv_alpha = 1.0
// Example 5: x = 0.0/0.0 (np.float32(np.nan))
// alpha_u32 = 0x3f800000
// inv_alpha_u32 = 0x3f800000
// alpha = 1.0
// inv_alpha = 1.0
//
fn approx(x: f32, alpha: *f32, inv_alpha: *f32) void {
const MASK_EXPONENT: u32 = 0x7F800000;
const MASK_MANTISSA: u32 = 0x007FFFFF;
const x_u32: u32 = @bitcast(u32, x);
// x is presented by (sign | E | mantissa)
// sign has 1 bit, E has 8 bits and mantissa has 23 bits
// E = (x & MASK_EXPONEN) >> 23
const exp: u32 = (x_u32 & MASK_EXPONENT);
// mantissa = b22b21...b1b0 has 23-bit, need u32
const mantissa: u32 = (x_u32) & MASK_MANTISSA;
// E has 8-bit, use u16
var E: u16 = @as(u16, (exp >> 23));
// case 1: 0 < E < 255, x is normal
// the following if-clause handles case 2, 3 and 4
if (0 == E){
if (0 == mantissa){
// case 3: x = 0
// reset alpha = 1
E = 127;
}else{
// case 2: x is subnormal
// reset alpha= 2^(-126)
E = 1;
}
}
if (255 == E){
// case 4: x = inf or NAN
// reset alpha = 1
E = 127;
}
// alpha and inv_alpha are u32
// alpha = 2^(E - 127)
// inv_alpha = 1/alpha = 2^(127 - E)
var alpha_u32: u32 = (@as(u32, E) << 23);
var inv_alpha_u32: u32 = @as(u32, (254 - E)) << 23;
alpha.* = @bitcast(f32, alpha_u32);
inv_alpha.* = @bitcast(f32, inv_alpha_u32);
}
// kernel of ymax = max(|y|)
// return max(ymax, |yval|)
fn reduce_fabs(yval : f32, ymax : *f32) f32 {
var yreg: f32 = math_lib.abs(yval);
if (yreg > ymax.*){
return yreg;
}else{
return ymax.*;
}
}
// kernel of sum = reduce( (y/alpha)^2, +)
// return sum + (yval/alpha)**2
fn reduce_scale_square(yval: f32, inv_alpha: f32, sum: *f32) f32 {
var yreg: f32 = yval * inv_alpha;
return sum.* + yreg * yreg;
}
// return |y[0:n]|_2
fn nrm2(n:i16, y: [*]f32) f32 {
var alpha: f32;
var inv_alpha: f32;
// step 1: ymax = max(|y|)
var ymax: f32 = @as(f32,0);
mem_y_dsd = @set_dsd_base_addr(mem_y_dsd, y);
mem_y_dsd = @set_dsd_length(mem_y_dsd, @bitcast(u16,n));
@map(reduce_fabs, mem_y_dsd, &ymax, &ymax);
// step 2: ymax = alpha * (ymax/alpha)
approx(ymax, &alpha, &inv_alpha);
// step 3: sum = reduce( (y/alpha)^2, +)
var sum: f32 = @as(f32, 0);
@map(reduce_scale_square, mem_y_dsd, inv_alpha, &sum, &sum);
// step 4: nrm2 = |y|_2 locally
sum = math_lib.sqrt(sum);
return (sum * alpha);
}
// kernel of sum = reduce( (y/alpha)^2, +)
// return sum + (yval/alpha)**2
fn reduce_dot(xval: f32, yval: f32, sum: *f32) f32 {
return sum.* + xval * yval;
}
// return dot(x,y)
fn dot(n:i16, x: [*]f32, y: [*]f32) f32 {
mem_x_dsd = @set_dsd_base_addr(mem_x_dsd, x);
mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
mem_y_dsd = @set_dsd_base_addr(mem_y_dsd, y);
mem_y_dsd = @set_dsd_length(mem_y_dsd, @bitcast(u16,n));
var sum: f32 = @as(f32, 0);
@map(reduce_dot, mem_x_dsd, mem_y_dsd, &sum, &sum);
return sum;
}
run.py¶
#!/usr/bin/env cs_python
# pylint: disable=too-many-function-args
""" test Preconditioned Conjugate Gradient of a sparse matrix A built by 7-point stencil
The following PCG algorithm is adopted from algorithm 10.3.1 [1].
---
The algorithm of Preconditioned Conjugate Gradient (PCG) is
Given b, x0 and tol = eps*|b|
k = 0
x = x0
r = b - A*x
xi = |r|^2
while xi > tol*tol and k < max_ite
solve M*z = r
rho = dot(r, z)
k = k + 1
if k == 1
p = z
else
beta = rho / rho_old
p = z + beta * p
end
w = A*p
eta = dot(w, p)
alpha = rho/eta
x = x + alpha * p
r = r - alpha * w
rho_old = rho
xi = |r|^2
end
x approximates the solution of a linear system Ax = b
The sparse matrix A is built by a 7-point stenil.
The 7-point stencil is defined by the following:
---
The Laplacian operator L on 3-dimensional domain can be represented by 7-point
stencil based on the standard 2nd order Finite Difference Method. The operator form
with Dirichlet boundary conditions can be written by
L[u](i,j,k) = u(i+1, j, k ) + u(i-1, j, k ) +
u(i, j+1,k ) + u(i, j-1, k ) +
u(i, j, k+1) + u(i, j, k-1) +
-6*u(i, j, k)
In general the coefficients of those 7 points can vary. To minimize the memory
consumption, this example assumes the coefficients are independent of index k and
whole vector u(i,j,:) is placed in one PE (px=j, py=i).
The above formula can be re-written by
c_west * x[i-1][j ][k ] + c_east * x[i+1][j ][k ] +
c_south * x[i ][j-1][k ] + c_north * x[i ][j+1][k ] +
c_bot * x[i ][j ][k-1] + c_top * x[i ][j ][k+1] +
c_center * x[i][j][k]
Each PE only holds 7 coefficients organized by c_west, c_east, c_south, c_north,
c_bot, c_top and c_center.
This example provides two modules, one is allreduce and the other is stencil_3d_7pts.
"allreduce" module can synchronize all PEs to form a reference clock.
"allreduce" module also computes dot(x,y) over a core rectangle.
"stencil_3d_7pts" module can compute y = A*x where A is the matrix from 7-point stencil.
The framework is
---
sync() // synchronize all PEs to sample the reference clock
tic() // record start time
r = b - A*x
for k = ...
solve M*z = r
update p
w = A*p
update x
update r
update xi=(r,r)
D2H(xi) to check convergence
end
toc() // record end time
---
This framework does transfer the nrm(r) back to host for each iteration of PCG. So the
I/O pressure is high, not good for performance. The run_cg.py removes this IO pressure.
The tic() samples "time_start" and toc() samples "time_end". The sync() samples
"time_ref" which is used to shift "time_start" and "time_end".
The elapsed time is measured by
cycles_send = max(time_end) - min(time_start)
The overall runtime is computed via the following formula
time_send = (cycles_send / 0.85) *1.e-3 us
where a PE runs with clock speed 850MHz
Here is the list of parameters:
-m=<int> is the height of the core
-n=<int> is the width of the core
-k=<int> is size of x and y allocated in the core
--zDim=<int> is the number of f32 per PE, computed by y = A*x
zDim must be not greater than k
--max-ite=<int> number of iterations
--channels=<int> specifies the number of I/O channels, no bigger than 16
Reference:
[1] Gene H. Golub, Charles F. Van Loan, MATRIX COMPUTATIONS third edition,
Johns Hopkins
"""
import os
from typing import Optional
from pathlib import Path
import shutil
import subprocess
import random
import numpy as np
from scipy.sparse.linalg import eigs
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType, MemcpyOrder # pylint: disable=no-name-in-module
from cmd_parser import parse_args
from util import (
hwl_2_oned_colmajor,
oned_to_hwl_colmajor,
laplacian,
csr_7_pt_stencil,
)
from pcg import preconditionedConjugateGradient
def make_u48(words):
return words[0] + (words[1] << 16) + (words[2] << 32)
def csl_compile_core(
cslc: str,
width: int, # width of the core
height: int, # height of the core
pe_length: int,
blockSize: int,
file_config: str,
elf_dir: str,
fabric_width: int,
fabric_height: int,
core_fabric_offset_x: int, # fabric-offsets of the core
core_fabric_offset_y: int,
use_precompile: bool,
arch: Optional[str],
C0: int,
C1: int,
C2: int,
C3: int,
C4: int,
C5: int,
C6: int,
C7: int,
C8: int,
channels: int,
width_west_buf: int,
width_east_buf: int
):
if not use_precompile:
args = []
args.append(cslc) # command
args.append(file_config)
args.append(f"--fabric-dims={fabric_width},{fabric_height}")
args.append(f"--fabric-offsets={core_fabric_offset_x},{core_fabric_offset_y}")
args.append(f"--params=width:{width},height:{height},MAX_ZDIM:{pe_length}")
args.append(f"--params=BLOCK_SIZE:{blockSize}")
args.append(f"--params=C0_ID:{C0}")
args.append(f"--params=C1_ID:{C1}")
args.append(f"--params=C2_ID:{C2}")
args.append(f"--params=C3_ID:{C3}")
args.append(f"--params=C4_ID:{C4}")
args.append(f"--params=C5_ID:{C5}")
args.append(f"--params=C6_ID:{C6}")
args.append(f"--params=C7_ID:{C7}")
args.append(f"--params=C8_ID:{C8}")
args.append(f"-o={elf_dir}")
if arch is not None:
args.append(f"--arch={arch}")
args.append("--memcpy")
args.append(f"--channels={channels}")
args.append(f"--width-west-buf={width_west_buf}")
args.append(f"--width-east-buf={width_east_buf}")
print(f"subprocess.check_call(args = {args}")
subprocess.check_call(args)
else:
print("\tuse pre-compile ELFs")
def timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl):
# time_start = start time of spmv
time_start = np.zeros((height, width)).astype(int)
# time_end = end time of spmv
time_end = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_memcpy_hwl[(h, w, 0)]
word[1] = time_memcpy_hwl[(h, w, 1)]
word[2] = time_memcpy_hwl[(h, w, 2)]
time_start[(h,w)] = make_u48(word)
word[0] = time_memcpy_hwl[(h, w, 3)]
word[1] = time_memcpy_hwl[(h, w, 4)]
word[2] = time_memcpy_hwl[(h, w, 5)]
time_end[(h,w)] = make_u48(word)
# time_ref = reference clock
time_ref = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_ref_hwl[(h, w, 0)]
word[1] = time_ref_hwl[(h, w, 1)]
word[2] = time_ref_hwl[(h, w, 2)]
time_ref[(h, w)] = make_u48(word)
# adjust the reference clock by the propagation delay
# the right-bottom PE signals other PEs, the propagation delay is
# (h-1) - py + (w-1) - px
for py in range(height):
for px in range(width):
time_ref[(py, px)] = time_ref[(py, px)] - ((width+height-2)-(px + py))
# shift time_start and time_end by time_ref
time_start = time_start - time_ref
time_end = time_end - time_ref
# cycles_send = time_end[(h,w)] - time_start[(h,w)]
# 850MHz --> 1 cycle = (1/0.85) ns = (1/0.85)*1.e-3 us
# time_send = (cycles_send / 0.85) *1.e-3 us
#
min_time_start = time_start.min()
max_time_end = time_end.max()
cycles_send = max_time_end - min_time_start
time_send = (cycles_send / 0.85) *1.e-3
print(f"cycles_send = {cycles_send} cycles")
print(f"time_send = {time_send} us")
# How to compile
# python run.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
# --width-west-buf=0 --width-east-buf=0 --compile-only
# How to run
# python run.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
# --width-west-buf=0 --width-east-buf=0 --run-only --zDim=5 --max-ite=1
def main():
"""Main method to run the example code."""
random.seed(127)
args, dirname = parse_args()
cslc = "cslc"
if args.driver is not None:
cslc = args.driver
print(f"cslc = {cslc}")
width_west_buf = args.width_west_buf
width_east_buf = args.width_east_buf
channels = args.channels
assert channels <= 16, "only support up to 16 I/O channels"
assert channels >= 1, "number of I/O channels must be at least 1"
print(f"width_west_buf = {width_west_buf}")
print(f"width_east_buf = {width_east_buf}")
print(f"channels = {channels}")
height = args.m
width = args.n
pe_length = args.k
zDim = args.zDim
blockSize = args.blockSize
max_ite = args.max_ite
print(f"width = {width}, height = {height}, pe_length={pe_length}, zDim={zDim}, blockSize={blockSize}")
print(f"max_ite = {max_ite}")
assert pe_length >= 2, "the maximum size of z must be greater than 1"
assert zDim <= pe_length, "[0, zDim) cannot exceed the storage"
np.random.seed(2)
x = np.arange(height*width*zDim).reshape(height, width, zDim).astype(np.float32) + 100
x_1d = hwl_2_oned_colmajor(height, width, zDim, x, np.float32)
nrm2_x = np.linalg.norm(x_1d.ravel(), 2)
# |x0|_2 = 1
x_1d = x_1d / nrm2_x
x = x / nrm2_x
b = np.arange(height*width*pe_length).reshape(height, width, pe_length).astype(np.float32) + 1
b_1d = hwl_2_oned_colmajor(height, width, pe_length, b, np.float32)
# stencil coefficients has the following order
# {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
stencil_coeff = np.zeros((height, width, 7), dtype = np.float32)
for i in range(height):
for j in range(width):
stencil_coeff[(i, j, 0)] = -1 # west
stencil_coeff[(i, j, 1)] = -1 # east
stencil_coeff[(i, j, 2)] = -1 # south
stencil_coeff[(i, j, 3)] = -1 # north
stencil_coeff[(i, j, 4)] = -1 # bottom
stencil_coeff[(i, j, 5)] = -1 # top
stencil_coeff[(i, j, 6)] = 6 + j # center
# fabric-offsets = 1,1
fabric_offset_x = 1
fabric_offset_y = 1
# starting point of the core rectangle = (core_fabric_offset_x, core_fabric_offset_y)
# memcpy framework requires 3 columns at the west of the core rectangle
# memcpy framework requires 2 columns at the east of the core rectangle
core_fabric_offset_x = fabric_offset_x + 3 + width_west_buf
core_fabric_offset_y = fabric_offset_y
# (min_fabric_width, min_fabric_height) is the minimal dimension to run the app
min_fabric_width = (core_fabric_offset_x + width + 2 + 1 + width_east_buf)
min_fabric_height = (core_fabric_offset_y + height + 1)
fabric_width = 0
fabric_height = 0
if args.fabric_dims:
w_str, h_str = args.fabric_dims.split(",")
fabric_width = int(w_str)
fabric_height = int(h_str)
if fabric_width == 0 or fabric_height == 0:
fabric_width = min_fabric_width
fabric_height = min_fabric_height
assert fabric_width >= min_fabric_width
assert fabric_height >= min_fabric_height
# prepare the simulation
print('store ELFs and log files in the folder ', dirname)
# layout of a rectangle
code_csl = "layout.csl"
C0 = 0
C1 = 1
C2 = 2
C3 = 3
C4 = 4
C5 = 5
C6 = 6
C7 = 7
C8 = 8
csl_compile_core(
cslc,
width,
height,
pe_length,
blockSize,
code_csl,
dirname,
fabric_width,
fabric_height,
core_fabric_offset_x,
core_fabric_offset_y,
args.run_only,
args.arch,
C0,
C1,
C2,
C3,
C4,
C5,
C6,
C7,
C8,
channels,
width_west_buf,
width_east_buf
)
if args.compile_only:
print("COMPILE ONLY: EXIT")
return
A_csr = csr_7_pt_stencil(stencil_coeff, height, width, zDim)
# check if A is symmetric or not
A_csc = A_csr.tocsc(copy=True)
A_csc = A_csc.sorted_indices().astype(np.float32)
assert 0 == np.linalg.norm(A_csr.indptr - A_csc.indptr, np.inf), "A must be symmetric"
assert 0 == np.linalg.norm(A_csr.indices - A_csc.indices, np.inf), "A must be symmetric"
assert 0 == np.linalg.norm(A_csr.data - A_csc.data, np.inf), "A must be symmetric"
nrm_b = np.linalg.norm(b_1d.ravel(), 2)
eps = 1.e-3
tol = eps * nrm_b
print(f"|b| = {nrm_b}")
print(f"max_ite = {max_ite}")
print(f"eps = {eps}")
print(f"tol = {tol}")
xf_1d, xi, k = preconditionedConjugateGradient(A_csr, x_1d, b_1d, max_ite, tol)
print(f"[host] after PCG, xi = {xi}, k = {k}")
memcpy_dtype = MemcpyDataType.MEMCPY_32BIT
simulator = SdkRuntime(dirname, cmaddr=args.cmaddr)
symbol_b = simulator.get_id("b")
symbol_x = simulator.get_id("x")
symbol_xi = simulator.get_id("xi")
symbol_stencil_coeff = simulator.get_id("stencil_coeff")
symbol_time_buf_u16 = simulator.get_id("time_buf_u16")
symbol_time_ref = simulator.get_id("time_ref")
simulator.load()
simulator.run()
print(f"copy vector b and x0")
simulator.memcpy_h2d(symbol_b, b_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
simulator.memcpy_h2d(symbol_x, x_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print(f"copy 7 stencil coefficients")
stencil_coeff_1d = hwl_2_oned_colmajor(height, width, 7, stencil_coeff, np.float32)
simulator.memcpy_h2d(symbol_stencil_coeff, stencil_coeff_1d, 0, 0, width, height, 7,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print("step 0: enable timer")
simulator.launch("f_enable_timer", nonblock=False)
print("step 1: sync all PEs")
simulator.launch("f_sync", nonblock=False)
print("step 2: copy reference clock from reduce module")
simulator.launch("f_reference_timestamps", nonblock=False)
print("step 3: tic() records time_start")
simulator.launch("f_tic", nonblock=True)
print(f"step 4: Preconditioned Conjugate Gradient with max_ite = {max_ite}, zDim = {zDim}")
print("step 4.1: initialization")
# - setup the Jacobi preconditioner
# - setup the length of all DSDs
simulator.launch("f_pcg_init", np.int16(zDim), nonblock=False)
k = 0
print("step 4.2: compute r0 = b - A*x0 and xi = |r0|^2")
# w = A*x0
simulator.launch("f_spmv_Ax", nonblock=False)
# r0 = b - w = b - A*x0
# xi = |r0|^2
simulator.launch("f_residual", nonblock=False)
xi_wse = np.zeros(1, np.float32)
simulator.memcpy_d2h(xi_wse, symbol_xi, 0, 0, 1, 1, 1,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
xi = xi_wse[0]
print(f"[PCG] iter {k}: xi = {xi}")
# if |r_k|_2 < tol, then exit
while ( (xi > tol*tol) and (k < max_ite) ):
print("step 4.3: update_z (solve M*z = r)")
# solve M*z = r
# rho = dot(r, z)
simulator.launch("f_update_z", nonblock=False)
k = k + 1
print("step 4.4: update p")
# if k == 1
# p = z
# else
# beta = rho/rho_old
# p = z + beta * p
simulator.launch("f_update_p", np.int16(k), nonblock=False)
print("step 4.5: compute w = A*p")
# w = A*p
simulator.launch("f_spmv_Ap", nonblock=False)
print("step 4.6: update eta")
# eta = np.dot(p,w) = (p_{k}, A*p_{k})
simulator.launch("f_eta", nonblock=False)
print("step 4.7: update alpha, x, r and rho")
# alpha_{k} = (r_{k-1}, z_{k-1})/<p_{k}, A*p_{k}>
# alpha = rho/eta
# x = x + alpha * p
# r = r - alpha * w where w = A*p
# rho_old = rho
# xi = np.dot(r,r)
simulator.launch("f_update_x_r_rho", nonblock=False)
simulator.memcpy_d2h(xi_wse, symbol_xi, 0, 0, 1, 1, 1,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
xi = xi_wse[0]
print(f"[PCG] iter {k}: xi = {xi}")
print("step 5: toc() records time_end")
simulator.launch("f_toc", nonblock=False)
print("step 6: prepare (time_start, time_end)")
simulator.launch("f_memcpy_timestamps", nonblock=False)
print("step 7: D2H (time_start, time_end)")
time_memcpy_hwl_1d = np.zeros(height*width*6, np.uint32)
simulator.memcpy_d2h(time_memcpy_hwl_1d, symbol_time_buf_u16, 0, 0, width, height, 6,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_memcpy_hwl = oned_to_hwl_colmajor(height, width, 6, time_memcpy_hwl_1d, np.uint16)
print("step 8: D2H reference clock")
time_ref_1d = np.zeros(height*width*3, np.uint32)
simulator.memcpy_d2h(time_ref_1d, symbol_time_ref, 0, 0, width, height, 3,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_ref_hwl = oned_to_hwl_colmajor(height, width, 3, time_ref_1d, np.uint16)
print("step 9: D2H x[zDim]")
xf_wse_1d = np.zeros(height*width*zDim, np.float32)
simulator.memcpy_d2h(xf_wse_1d, symbol_x, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
simulator.stop()
if args.cmaddr is None:
# move simulation log and core dump to the given folder
dst_log = Path(f"{dirname}/sim.log")
src_log = Path("sim.log")
if src_log.exists():
shutil.move(src_log, dst_log)
dst_trace = Path(f"{dirname}/simfab_traces")
src_trace = Path("simfab_traces")
if dst_trace.exists():
shutil.rmtree(dst_trace)
if src_trace.exists():
shutil.move(src_trace, dst_trace)
timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl)
nrm2_xf = np.linalg.norm(xf_wse_1d.ravel(), 2)
print(f"|xf|_2 = {nrm2_xf}")
z = xf_1d.ravel() - xf_wse_1d.ravel()
nrm_z = np.linalg.norm(z, np.inf)
print(f"|xf_ref - xf_wse| = {nrm_z}")
np.testing.assert_allclose(xf_1d.ravel(), xf_wse_1d.ravel(), 1.e-5)
print("\nSUCCESS!")
vals, vecs = eigs(A_csr, k=1, which='SM')
min_eig = abs(vals[0])
vals, vecs = eigs(A_csr, k=1, which='LM')
max_eig = abs(vals[0])
print(f"min(eig) = {min_eig}")
print(f"max(eig) = {max_eig}")
print(f"cond(A) = {max_eig/min_eig}")
if 0:
debug_mod = debug_util(dirname, cmaddr=args.cmaddr)
print(f"=== dump dot with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
for py in range(height):
for px in range(width):
t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'rho', np.float32)
print(f"(py, px) = {py, px}, rho_ij = {t}")
if __name__ == "__main__":
main()
cmd_parser.py¶
# This is not a real test, but a module that gets imported in other tests.
"""command parser for bandwidthTest
-m <int> number of rows of the core rectangle
-n <int> number of columns of the core rectangle
-k <int> number of elements of local tensor
--zDim <int> number of elements to compute y=A*x
--blockSize <int> the size of temporary buffers for communication
--latestlink working directory
--driver path to CSL compiler
--fabric-dims fabric dimension of a WSE
--cmaddr IP address of a WSE
--channels number of I/O channels, 1 <= channels <= 16
--width-west-buf number of columns of the buffer in the west of the core rectangle
--width-east-buf number of columns of the buffer in the east of the core rectangle
--compile-only compile ELFs
--run-only run the test with precompiled binary
"""
import os
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
default=1, type=int,
help="number of rows")
parser.add_argument(
"-n",
default=1, type=int,
help="number of columns")
parser.add_argument(
"-k",
default=1, type=int,
help="size of local tensor, no less than 2")
parser.add_argument(
"--zDim",
default=2, type=int,
help="[0 zDim-1) is the domain of Laplacian")
parser.add_argument(
"--max-ite",
default=1, type=int,
help="maximum number of iterations of power method")
parser.add_argument(
"--latestlink",
help="folder to contain the log files (default: latest)")
parser.add_argument(
"-d",
"--driver",
help="The path to the CSL compiler")
parser.add_argument(
"--compile-only",
help="Compile only", action="store_true")
parser.add_argument(
"--fabric-dims",
help="Fabric dimension, i.e. <W>,<H>")
parser.add_argument(
"--cmaddr",
help="CM address and port, i.e. <IP>:<port>")
parser.add_argument(
"--run-only",
help="Run only", action="store_true")
parser.add_argument(
"--arch",
help="wse2 or wse3. Default is wse2 when not supplied.")
parser.add_argument(
"--width-west-buf",
default=0, type=int,
help="width of west buffer")
parser.add_argument(
"--width-east-buf",
default=0, type=int,
help="width of east buffer")
parser.add_argument(
"--channels",
default=1, type=int,
help="number of I/O channels, between 1 and 16")
parser.add_argument(
"--blockSize",
default=2, type=int,
help="the size of temporary buffers for communication")
args = parser.parse_args()
logs_dir = "latest"
if args.latestlink:
logs_dir = args.latestlink
dir_exist = os.path.isdir(logs_dir)
if dir_exist:
print(f"{logs_dir} already exists")
else:
print(f"create {logs_dir} to store log files")
os.mkdir(logs_dir)
return args, logs_dir
util.py¶
import os
import numpy as np
from scipy.sparse import coo_matrix
def COL_MAJOR(h, w, l, height, width, pe_length):
assert 0 <= h and h < height
assert 0 <= w and w < width
assert 0 <= l and l < pe_length
return (h + w*height + l*height*width)
def hwl_2_oned_colmajor(
height: int,
width: int,
pe_length: int,
A_hwl: np.ndarray,
dtype
):
"""
Given a 3-D tensor A[height][width][pe_length], transform it to
1D array by column-major
"""
A_1d = np.zeros(height*width*pe_length, dtype)
idx = 0
for l in range(pe_length):
for w in range(width):
for h in range(height):
A_1d[idx] = A_hwl[(h, w, l)]
idx = idx + 1
return A_1d
def oned_to_hwl_colmajor(
height: int,
width: int,
pe_length: int,
A_1d: np.ndarray,
dtype
):
"""
Given a 1-D tensor A_1d[height*width*pe_length], transform it to
3-D tensor A[height][width][pe_length] by column-major
"""
if dtype == np.float32:
# only support f32 to f32
assert A_1d.dtype == np.float32, "only support f32 to f32"
A_hwl = np.reshape(A_1d, (height, width, pe_length), order='F')
elif dtype == np.uint16:
# only support u32 to u16 by dropping upper 16-bit
assert A_1d.dtype == np.uint32, "only support u32 to u16"
A_hwl = np.zeros((height, width, pe_length), dtype)
idx = 0
for l in range(pe_length):
for w in range(width):
for h in range(height):
x = A_1d[idx]
x = x & 0x0000FFFF # drop upper 16-bit
A_hwl[(h, w, l)] = np.uint16(x)
idx = idx + 1
else:
raise RuntimeError(f"{dtype} is not supported")
return A_hwl
# y = Laplacian(x) for z=0,1,..,zDim-1
#
# The capacity of x and y can be bigger than zDim, but the physical domain is [0,zDim)
#
# The coordinates of physical domain are x,y,z.
# The physical layout of WSE is width, height.
# To avoid confusion, the kernel is written based on the layout of
# WSE, not physical domain of the application.
# For example, the user can match x-coordinate to x direction of
# WSE and y-coordinate to y-direction of WSE.
# x-coord
# +--------+
# y-coord | |
# +--------+
#
# The stencil coefficients "stencil_coeff" can vary along x-y direction,
# but universal along z-direction. Each PE can have seven coefficents,
# west, east, south, north, bottom, top and center.
#
# Input:
# stencil_coeff: size is (h,w,7)
# x: size is (h,w,l)
# Output:
# y: size is (h,w,l)
#
def laplacian(stencil_coeff, zDim, x, y):
(height, width, pe_length) = x.shape
assert zDim <= pe_length
# y and x must have the same dimensions
(m, n, k) = y.shape
assert m == height
assert n == width
assert pe_length == k
# stencil_coeff must be (h,w,7)
(m, n, k) = stencil_coeff.shape
assert m == height
assert n == width
assert 7 == k
# North
# j
# +------+
# West i | | East
# +------+
# south
for i in range(height):
for j in range(width):
for k in range(zDim):
c_west = stencil_coeff[(i,j,0)]
c_east = stencil_coeff[(i,j,1)]
c_south = stencil_coeff[(i,j,2)]
c_north = stencil_coeff[(i,j,3)]
c_bottom = stencil_coeff[(i,j,4)]
c_top = stencil_coeff[(i,j,5)]
c_center = stencil_coeff[(i,j,6)]
west_buf = 0 # x[(i,-1,k)]
if 0 < j:
west_buf = x[(i,j-1,k)]
east_buf = 0 # x[(i,w,k)]
if j < width-1:
east_buf = x[(i,j+1,k)]
north_buf = 0; # x[(-1,j,k)]
if 0 < i:
north_buf = x[(i-1,j,k)]
south_buf = 0 # x[(h,j,k)]
if i < height-1:
south_buf = x[(i+1,j,k)]
bottom_buf = 0 # x[(i,j,-1)]
if 0 < k:
bottom_buf = x[(i,j,k-1)]
top_buf = 0 # x[(i,j,l)]
if k < zDim-1:
top_buf = x[(i,j,k+1)]
center_buf = x[(i,j,k)]
y[(i,j,k)] = c_west*west_buf + c_east*east_buf + \
c_south*south_buf + c_north*north_buf + \
c_bottom*bottom_buf + c_top*top_buf + \
c_center*center_buf
# Given a 7-point stencil, generate sparse matrix A.
# A is represented by CSR.
# The order of grids is column-major
def csr_7_pt_stencil(stencil_coeff, height, width, pe_length):
# stencil_coeff must be (h,w,7)
(m, n, k) = stencil_coeff.shape
assert m == height
assert n == width
assert 7 == k
N = height * width * pe_length
# each point has 7 coefficents at most
cooRows = np.zeros(7*N, np.int32)
cooCols = np.zeros(7*N, np.int32)
cooVals = np.zeros(7*N, np.float32)
# North
# j
# +------+
# West i | | East
# +------+
# south
nnz = 0
for i in range(height):
for j in range(width):
for k in range(pe_length):
c_west = stencil_coeff[(i,j,0)]
c_east = stencil_coeff[(i,j,1)]
c_south = stencil_coeff[(i,j,2)]
c_north = stencil_coeff[(i,j,3)]
c_bottom = stencil_coeff[(i,j,4)]
c_top = stencil_coeff[(i,j,5)]
c_center = stencil_coeff[(i,j,6)]
center_idx = COL_MAJOR(i, j, k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = center_idx
cooVals[nnz] = c_center
nnz += 1
#west_buf = 0 # x[(i,-1,k)]
if 0 < j:
west_idx = COL_MAJOR(i, j-1, k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = west_idx
cooVals[nnz] = c_west;
nnz += 1
#east_buf = 0 # x[(i,w,k)]
if j < width-1:
east_idx = COL_MAJOR(i,j+1,k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = east_idx
cooVals[nnz] = c_east
nnz += 1
#north_buf = 0; # x[(-1,j,k)]
if 0 < i:
north_idx = COL_MAJOR(i-1,j,k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = north_idx
cooVals[nnz] = c_north
nnz += 1
#south_buf = 0 # x[(h,j,k)]
if i < height-1:
south_idx = COL_MAJOR(i+1,j,k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = south_idx
cooVals[nnz] = c_south
nnz += 1
#bottom_buf = 0 # x[(i,j,-1)]
if 0 < k:
bottom_idx = COL_MAJOR(i,j,k-1, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = bottom_idx
cooVals[nnz] = c_bottom
nnz += 1
#top_buf = 0 # x[(i,j,l)]
if k < pe_length-1:
top_idx = COL_MAJOR(i,j,k+1, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = top_idx
cooVals[nnz] = c_top
nnz += 1
A_coo = coo_matrix((cooVals, (cooRows, cooCols)), shape=(N, N))
A_csr = A_coo.tocsr(copy=True)
# sort column indices
A_csr = A_csr.sorted_indices().astype(np.float32)
assert 1 == A_csr.has_sorted_indices, "Error: A is not sorted"
return A_csr
pcg.py¶
import numpy as np
from scipy.sparse import diags
from numpy import linalg as LA
# solve a linear system A * x = b
# where A is a symmetric positive definite matrix
#
# The conjugate gradient method is adopted from Algorithm 10.2.1 of the book
# GENE H. GOLUB, CHARLES F. VAN LOAN, MATRIX COMPUTATIONS, THIRD EDITION
#
# Input
# A_csr sparse matrix of type scipy.sparse.csr_matrix
# x0 initial guess, could be a random vector or the approximated solution
# of some other iterative solver
# b right-hand-side vector
# max_ite maximum number of iterations
# tol tolerance to stop the algorithm
# the bigger, the more iterations
# usually tol = eps * |b| where eps > 1.e-6 for f32
# Output
# x approximated solution of A*x=b
# xi |b - A*x|^2
# k the number of iterations
#
def preconditionedConjugateGradient(A_csr, x0, b, max_ite, tol):
# extract diagonal of A as a preconditioner
D = A_csr.diagonal()
invD = np.copy(D)
for i in range(len(D)):
invD[i] = 1.0/invD[i]
#print(f"D = {D}")
#print(f"invD = {invD}")
invD_mat = diags(invD)
k = 0
x = np.copy(x0)
# r0 = b - A*x0
y = A_csr.dot(x)
r = b - y
# xi = |r0|^2
xi = np.dot(r,r)
print(f"[PCG] iter {k}: xi = {xi}")
# if |r_k|_2 < tol, then exit
while ( (xi > tol*tol) and (k < max_ite) ):
# solve M*z = r
z = invD_mat.dot(r)
# rho = dot(r, z)
rho = np.dot(r,z)
k = k + 1
if k == 1:
# p1 = z0
p = z
else:
# beta_{k} = (r_{k-1}, z_{k-1})/(r_{k-2}, z_{k-2})
beta = rho/rho_old
# p_{k} = z_{k-1} + beta_{k} * p_{k-1}
p = z + beta * p
# alpha_{k} = (r_{k-1}, z_{k-1})/(p_{k}, A*p_{k})
w = A_csr.dot(p) # w = A*p_{k}
eta = np.dot(p,w) # eta = (p_{k}, A*p_{k})
alpha = rho/eta
# x_{k} = x_{k-1} + alpha_{k} * p_{k}
x = x + alpha * p
# r_{k} = r_{k-1} - alpha_{k} * A*p_{k}
r = r - alpha * w
# update rho
rho_old = rho
xi = np.dot(r,r)
print(f"[PCG] iter {k}: xi = {xi}")
return x, xi, k
commands.sh¶
#!/usr/bin/env bash
set -e
cslc ./src/layout.csl --arch wse3 --fabric-dims=12,7 --fabric-offsets=4,1 \
--params=width:5,height:5,MAX_ZDIM:5 --params=BLOCK_SIZE:2 --params=C0_ID:0 \
--params=C1_ID:1 --params=C2_ID:2 --params=C3_ID:3 --params=C4_ID:4 --params=C5_ID:5 \
--params=C6_ID:6 --params=C7_ID:7 --params=C8_ID:8 -o=out \
--memcpy --channels=1 --width-west-buf=0 --width-east-buf=0
cs_python ./run.py -m=5 -n=5 -k=5 --latestlink out --channels=1 \
--width-west-buf=0 --width-east-buf=0 --zDim=5 --run-only --max-ite=2
layout_pcg.csl¶
// color map: memcpy + allreduce + stencil
//
// color var color var color var color var
// 0 C0 9 18 EN_REDUCE_2 27 reserved (memcpy)
// 1 C1 10 19 EN_REDUCE_3 28 reserved (memcpy)
// 2 C2 11 20 EN_REDUCE_4 29 reserved (memcpy)
// 3 C3 12 STATE 21 reserved (memcpy) 30 reserved (memcpy)
// 4 C4 13 22 reserved (memcpy) 31 reserved
// 5 C5 14 EN_STENCIL_1 23 reserved (memcpy) 32
// 6 C6 15 EN_STENCIL_2 24 33
// 7 C7 16 EN_STENCIL_3 25 34
// 8 C8 17 EN_REDUCE_1 26 35
//
// c0,c1,c2,c3,c4,c5,c6,c7 are internal colors of 7-point stencil
param C0_ID: i16;
param C1_ID: i16;
param C2_ID: i16;
param C3_ID: i16;
param C4_ID: i16;
param C5_ID: i16;
param C6_ID: i16;
param C7_ID: i16;
// c8 is an internal color of allreduce
param C8_ID: i16;
param MAX_ZDIM: i16; // maximum size of local vector x and y
param width: i16 ; // width of the core
param height: i16 ; // height of the core
param BLOCK_SIZE: i16; // size of temporary buffers for communication
const C0: color = @get_color(C0_ID);
const C1: color = @get_color(C1_ID);
const C2: color = @get_color(C2_ID);
const C3: color = @get_color(C3_ID);
const C4: color = @get_color(C4_ID);
const C5: color = @get_color(C5_ID);
const C6: color = @get_color(C6_ID);
const C7: color = @get_color(C7_ID);
const C8: color = @get_color(C8_ID);
// entrypoint of state machine in PCG
const STATE: local_task_id = @get_local_task_id(12);
// entrypoints of 7-point stenil
const EN_STENCIL_1: local_task_id = @get_local_task_id(14);
const EN_STENCIL_2: local_task_id = @get_local_task_id(15);
const EN_STENCIL_3: local_task_id = @get_local_task_id(16);
// entrypoints of allreduce
const EN_REDUCE_1: local_task_id = @get_local_task_id(17);
const EN_REDUCE_2: local_task_id = @get_local_task_id(18);
const EN_REDUCE_3: local_task_id = @get_local_task_id(19);
const EN_REDUCE_4: local_task_id = @get_local_task_id(20);
const stencil = @import_module( "../../csl-libs/stencil_3d_7pts/layout.csl", .{
.colors = [8]color{C0, C1, C2, C3, C4, C5, C6, C7},
.entrypoints = [3]local_task_id{EN_STENCIL_1, EN_STENCIL_2, EN_STENCIL_3},
.width = width,
.height = height
});
const reduce = @import_module( "../../csl-libs/allreduce/layout.csl", .{
.colors = [1]color{C8},
.entrypoints = [4]local_task_id{EN_REDUCE_1, EN_REDUCE_2, EN_REDUCE_3, EN_REDUCE_4},
.width = width,
.height = height
});
const memcpy = @import_module( "<memcpy/get_params>", .{
.width = width,
.height = height,
});
layout{
@comptime_assert(C0_ID < C1_ID);
@comptime_assert(C1_ID < C2_ID);
@comptime_assert(C2_ID < C3_ID);
@comptime_assert(C3_ID < C4_ID);
@comptime_assert(C4_ID < C5_ID);
@comptime_assert(C5_ID < C6_ID);
@comptime_assert(C6_ID < C7_ID);
@comptime_assert(C7_ID < C8_ID);
// step 1: configure the rectangle which does not include halo
@set_rectangle( width, height );
// step 2: compile csl code for a set of PEx.y and generate out_x_y.elf
// format: @set_tile_code(x, y, code.csl, param_binding);
var py: i16 = 0;
while(py < height) : (py +=1) {
var px: i16 = 0;
while(px < width) : (px +=1) {
const memcpyParams = memcpy.get_params(px);
const stencilParams = stencil.get_params(px, py);
const reduceParams = reduce.get_params(px, py);
var params: comptime_struct = .{
.memcpyParams = memcpyParams,
.reduceParams = reduceParams,
.MAX_ZDIM = MAX_ZDIM,
.BLOCK_SIZE = BLOCK_SIZE,
.STATE = STATE,
.stencilParams = stencilParams
};
@set_tile_code(px, py, "kernel_pcg.csl", params);
}
}
@export_name("b", [*]f32, true);
@export_name("x", [*]f32, true);
@export_name("stencil_coeff", [*]f32, true);
@export_name("time_buf_u16", [*]u16, true);
@export_name("time_ref", [*]u16, true);
@export_name("rho", [*]f32, true);
@export_name("xi", [*]f32, true);
@export_name("f_enable_timer", fn()void);
@export_name("f_tic", fn()void);
@export_name("f_toc", fn()void);
@export_name("f_memcpy_timestamps", fn()void);
@export_name("f_pcg", fn(i16,f32,i16)void);
@export_name("f_sync", fn()void);
@export_name("f_reference_timestamps", fn()void);
} // end of layout
kernel_pcg.csl¶
param memcpyParams: comptime_struct;
param reduceParams: comptime_struct;
param stencilParams: comptime_struct;
param MAX_ZDIM: i16; // size of vector x
param BLOCK_SIZE: i16; // size of temporary buffers for communication
param STATE: local_task_id;
const timestamp = @import_module("<time>");
const math_lib = @import_module("<math>");
const blas_lib = @import_module("blas.csl");
// memcpy module reserves
// - input/output queue 0 and 1
const sys_mod = @import_module( "<memcpy/memcpy>", memcpyParams);
// allreduce uses input queue/output queue 1
const reduce_mod = @import_module( "../../csl-libs/allreduce/pe.csl", @concat_structs(reduceParams, .{
.f_callback = f_trigger_state_machine,
.queues = [1]u16{2},
.dest_dsr_ids = [1]u16{1},
.src0_dsr_ids = [1]u16{1},
.src1_dsr_ids = [1]u16{1}
}));
// output queue cannot overlap input queues
const stencil_mod = @import_module( "../../csl-libs/stencil_3d_7pts/pe.csl", @concat_structs(stencilParams, .{
.f_callback = f_trigger_state_machine,
.input_queues = [4]u16{4, 5, 6, 7},
.output_queues = if (@is_arch("wse3")) [4]u16{4, 5, 6, 7} else [1]u16{3},
.output_ut_id = 3,
.BLOCK_SIZE = BLOCK_SIZE,
.dest_dsr_ids = [2]u16{2,3},
.src0_dsr_ids = [1]u16{2},
.src1_dsr_ids = [2]u16{2,3}
}));
// tsc_size_words = 3
// starting time of H2D/D2H
var tscStartBuffer = @zeros([timestamp.tsc_size_words]u16);
// ending time of H2D/D2H
var tscEndBuffer = @zeros([timestamp.tsc_size_words]u16);
var b = @zeros([MAX_ZDIM]f32); // right-hand-side
var x = @zeros([MAX_ZDIM]f32); // approximated solution
var p = @zeros([MAX_ZDIM]f32); // Krylov space
var w = @zeros([MAX_ZDIM]f32); // w = A * p
var r = @zeros([MAX_ZDIM]f32); // residual
var z = @zeros([MAX_ZDIM]f32); // solve M*z = r
var dot = @zeros([1]f32); // dummy variable for f_sync
var xi = @zeros([1]f32);
var rho = @zeros([1]f32);
var rho_old = @zeros([1]f32);
var eta = @zeros([1]f32);
var beta: f32 = @as(f32,0);
// stencil coefficients are organized as
// {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
//
// The formula is
// c_west * x[i-1][j][k] + c_east * x[i+1][j][k] +
// c_south * x[i][j-1][k] + c_north * x[i][j+1][k] +
// c_bottom * x[i][j][k-1] + c_top * x[i][j][k+1] +
// c_center * x[i][j][k]
var stencil_coeff = @zeros([7]f32);
// invD = 1/c_center
var invD: f32 = @as(f32, 1.0);
// time_buf_u16[0:5] = {tscStartBuffer, tscEndBuffer}
var time_buf_u16 = @zeros([timestamp.tsc_size_words*2]u16);
// reference clock inside allreduce module
var time_ref_u16 = @zeros([timestamp.tsc_size_words]u16);
var ptr_b: [*]f32 = &b;
var ptr_x: [*]f32 = &x;
var ptr_stencil_coeff: [*]f32 = &stencil_coeff;
var ptr_time_buf_u16: [*]u16 = &time_buf_u16;
var ptr_time_ref: [*]u16 = &time_ref_u16;
var ptr_rho: [*]f32 = ρ
var ptr_xi: [*]f32 = ξ
// size of local tensor during the PCG
var n: i16 = 0;
var tol: f32 = @as(f32, 0);
var max_ite: i16 = 0;
var mem_b_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> b[i] });
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> x[i] });
var mem_r_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r[i] });
var mem_p_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> p[i] });
var mem_w_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> w[i] });
var mem_z_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> z[i] });
const STATE_SYNC: i16 = 0;
const STATE_INIT: i16 = 1;
const STATE_SPMV_AX: i16 = 2;
const STATE_RESIDUAL: i16 = 3;
const STATE_CONV_CHECK: i16 = 4;
const STATE_UPDATE_Z: i16 = 5;
const STATE_UPDATE_P: i16 = 6;
const STATE_SPMV_AP: i16 = 7;
const STATE_ETA: i16 = 8;
const STATE_UPDATE_X_R_RHO: i16 = 9;
const STATE_EXIT: i16 = 10;
var k: i16 = 0;
var cur_state: i16 = 0;
var next_state: i16 = 0;
fn f_enable_timer() void {
timestamp.enable_tsc();
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_tic() void {
timestamp.get_timestamp(&tscStartBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_toc() void {
timestamp.get_timestamp(&tscEndBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_memcpy_timestamps() void {
time_buf_u16[0] = tscStartBuffer[0];
time_buf_u16[1] = tscStartBuffer[1];
time_buf_u16[2] = tscStartBuffer[2];
time_buf_u16[3] = tscEndBuffer[0];
time_buf_u16[4] = tscEndBuffer[1];
time_buf_u16[5] = tscEndBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_sync() void {
cur_state = STATE_SYNC;
@activate(STATE);
}
fn f_pcg(size:i16, tol_val:f32, max_ite_val: i16) void {
n = size;
tol = tol_val;
max_ite = max_ite_val;
cur_state = STATE_INIT;
@activate(STATE);
}
// initialization of PCG
// - setup Jacobi preconditioner
// D = diag(A)
// dii = c_center
// - setup the length of all DSDs
//
fn f_pcg_init() void {
// stencil_coeff = {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
invD = math_lib.inv(stencil_coeff[6]);
// set the length of all DSDs
mem_b_dsd = @set_dsd_length(mem_b_dsd, @bitcast(u16,n));
mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
mem_p_dsd = @set_dsd_length(mem_p_dsd, @bitcast(u16,n));
mem_r_dsd = @set_dsd_length(mem_r_dsd, @bitcast(u16,n));
mem_w_dsd = @set_dsd_length(mem_w_dsd, @bitcast(u16,n));
mem_z_dsd = @set_dsd_length(mem_z_dsd, @bitcast(u16,n));
// must go back to state machine
f_trigger_state_machine();
}
// w = A*x
fn f_spmv_Ax() void {
stencil_mod.spmv(n, &stencil_coeff, &x, &w);
}
// compute r = b - w and xi = |r|^2
// where w = A*x is computed by f_spmv_Ax
fn f_residual() void {
@fsubs(mem_r_dsd, mem_b_dsd, mem_w_dsd);
// compute <r, r> locally
xi[0] = blas_lib.dot(n, &r, &r);
// reduce(|r|^2)
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
// solve M*z = r
// rho = dot(r, z)
fn f_update_z() void {
// z = invD * r
@fmuls(mem_z_dsd, invD, mem_r_dsd);
// rho = dot(r, z)
// compute <r, z> locally
rho[0] = blas_lib.dot(n, &r, &z);
// reduce((r,z))
reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}
// if k is 1
// p = z0
// else
// beta = rho/rho_old
// p = z + beta*p
// end
fn f_update_p() void {
if (1 == k){
// p = z0
@fmovs(mem_p_dsd, mem_z_dsd);
}else{
// beta_{k} = (r_{k-1}, z_{k-1})/(r_{k-2}, z_{k-2})
beta = rho[0]/rho_old[0];
// p_{k} = z_{k-1} + beta_{k} * p_{k-1}
@fmacs(mem_p_dsd, mem_z_dsd, mem_p_dsd, beta);
}
// must go back to state machine
f_trigger_state_machine();
}
// w = A*p
fn f_spmv_Ap() void {
stencil_mod.spmv(n, &stencil_coeff, &p, &w);
}
// eta = np.dot(p,w)
fn f_eta() void {
// compute <w, p> locally
eta[0] = blas_lib.dot(n, &w, &p);
// reduce(<w,p>)
reduce_mod.allreduce(1, &eta, reduce_mod.TYPE_BINARY_OP.ADD);
}
// update x, r and rho
// ---
// alpha = rho/eta
// x = x + alpha * p
// r = r - alpha * w where w = A*p
// rho_old = rho
// xi = np.dot(r,r)
// ---
//
// w must be computed by f_spmv_Ap()
// eta must be computed by f_eta()
//
fn f_update_x_r_rho() void {
var alpha: f32 = rho[0]/eta[0];
var alpha_minus: f32 = -alpha;
// x_{k} = x_{k-1} + alpha_{k} * p_{k}
// x = x + alpha * p
@fmacs(mem_x_dsd, mem_x_dsd, mem_p_dsd, alpha);
// r_{k} = r_{k-1} - alpha_{k} * A*p_{k}
// r = r - alpha * w
@fmacs(mem_r_dsd, mem_r_dsd, mem_w_dsd, alpha_minus);
// update rho
rho_old[0] = rho[0];
// xi = np.dot(r,r)
// compute <r, r> locally
xi[0] = blas_lib.dot(n, &r, &r);
// reduce(|r|^2)
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
fn f_trigger_state_machine() void {
cur_state = next_state; // go to next state
@activate(STATE);
}
// state machine of pcg module
// it contains two operations
// - sync operation of allreduce
// - PCG algorithm
//
// The callback f_trigger_state_machine is provided for the
// allreduce module and stencil module.
//
// The state transition of sync is
// SYNC --> EXIT
//
// The state transition of PCG algorithm is
// INIT --> SPMV_AX --> RESIDUAL --> CONV_CHECK --> EXIT OR UPDATE_Z
// --> UPDATE_P --> SPMV_AP --> ETA --> UPDATE_X_R_RHO --> CONV_CEHCK
//
// The motivation of providing sync under PCG is to avoid another
// allreduce module imported by the user because of insufficient
// resources.
// (PCG + stencil needs 9 routable colors and 7 entrypoints)
//
task f_state() void {
if (STATE_SYNC == cur_state){
// sync all PEs by internal allreduce module
next_state = STATE_EXIT;
reduce_mod.allreduce(1, &dot, reduce_mod.TYPE_BINARY_OP.ADD);
}else if (STATE_INIT == cur_state){
next_state = STATE_SPMV_AX;
f_pcg_init();
}else if (STATE_SPMV_AX == cur_state){
next_state = STATE_RESIDUAL;
k = 0;
// w = A*x0
f_spmv_Ax();
}else if (STATE_RESIDUAL == cur_state){
next_state = STATE_CONV_CHECK;
// r0 = b - w = b - A*x0
// xi = |r0|^2
f_residual();
}else if (STATE_CONV_CHECK == cur_state){
// if |r_k|_2 < tol, then exit
if ((xi[0] > tol*tol) and (k < max_ite)){
next_state = STATE_UPDATE_Z;
}else{
next_state = STATE_EXIT;
}
f_trigger_state_machine();
}else if (STATE_UPDATE_Z == cur_state){
next_state = STATE_UPDATE_P;
// solve M*z = r
// rho = dot(r, z)
f_update_z();
}else if (STATE_UPDATE_P == cur_state){
next_state = STATE_SPMV_AP;
k = k + 1;
// if k == 1
// p = z
// else
// beta = rho/rho_old
// p = z + beta * p
f_update_p();
}else if (STATE_SPMV_AP == cur_state){
next_state = STATE_ETA;
// w = A*p
f_spmv_Ap();
}else if (STATE_ETA == cur_state){
next_state = STATE_UPDATE_X_R_RHO;
// eta = np.dot(p,w) = (p_{k}, A*p_{k})
f_eta();
}else if (STATE_UPDATE_X_R_RHO == cur_state){
next_state = STATE_CONV_CHECK;
// alpha = rho/eta
// x = x + alpha * p
// r = r - alpha * w where w = A*p
// rho_old = rho
// xi = np.dot(r,r)
f_update_x_r_rho();
}else if (STATE_EXIT == cur_state){
sys_mod.unblock_cmd_stream();
}else{
@assert(false); // Error: unknown state
// assert() is ignored by HW, it could hang here
// To avoid a stall, trigger callback (the caveat is the wrong result)
sys_mod.unblock_cmd_stream();
}
}
fn f_reference_timestamps() void {
time_ref_u16[0] = reduce_mod.tscRefBuffer[0];
time_ref_u16[1] = reduce_mod.tscRefBuffer[1];
time_ref_u16[2] = reduce_mod.tscRefBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
comptime {
@bind_local_task( f_state, STATE);
}
comptime {
@export_symbol(ptr_b, "b");
@export_symbol(ptr_x, "x");
@export_symbol(ptr_stencil_coeff, "stencil_coeff");
@export_symbol(ptr_time_buf_u16, "time_buf_u16");
@export_symbol(ptr_time_ref, "time_ref");
@export_symbol(ptr_rho, "rho");
@export_symbol(ptr_xi, "xi");
}
comptime{
@export_symbol(f_enable_timer);
@export_symbol(f_tic);
@export_symbol(f_toc);
@export_symbol(f_memcpy_timestamps);
@export_symbol(f_pcg);
@export_symbol(f_sync);
@export_symbol(f_reference_timestamps);
}
run_pcg.py¶
#!/usr/bin/env cs_python
# pylint: disable=too-many-function-args
""" test Preconditioned Conjugate Gradient of a sparse matrix A built by 7-point stencil
The following PCG algorithm is adopted from algorithm 10.3.1 [1].
---
The algorithm of Preconditioned Conjugate Gradient (PCG) is
Given b, x0 and tol = eps*|b|
k = 0
x = x0
r = b - A*x
xi = |r|^2
while xi > tol*tol and k < max_ite
solve M*z = r
rho = dot(r, z)
k = k + 1
if k == 1
p = z
else
beta = rho / rho_old
p = z + beta * p
end
w = A*p
eta = dot(w, p)
alpha = rho/eta
x = x + alpha * p
r = r - alpha * w
rho_old = rho
xi = |r|^2
end
x approximates the solution of a linear system Ax = b
The sparse matrix A is built by a 7-point stenil.
The 7-point stencil is defined by the following:
---
The Laplacian operator L on 3-dimensional domain can be represented by 7-point
stencil based on the standard 2nd order Finite Difference Method. The operator form
with Dirichlet boundary conditions can be written by
L[u](i,j,k) = u(i+1, j, k ) + u(i-1, j, k ) +
u(i, j+1,k ) + u(i, j-1, k ) +
u(i, j, k+1) + u(i, j, k-1) +
-6*u(i, j, k)
In general the coefficients of those 7 points can vary. To minimize the memory
consumption, this example assumes the coefficients are independent of index k and
whole vector u(i,j,:) is placed in one PE (px=j, py=i).
The above formula can be re-written by
c_west * x[i-1][j ][k ] + c_east * x[i+1][j ][k ] +
c_south * x[i ][j-1][k ] + c_north * x[i ][j+1][k ] +
c_bot * x[i ][j ][k-1] + c_top * x[i ][j ][k+1] +
c_center * x[i][j][k]
Each PE only holds 7 coefficients organized by c_west, c_east, c_south, c_north,
c_bot, c_top and c_center.
This example provides two modules, one is allreduce and the other is stencil_3d_7pts.
"allreduce" module can synchronize all PEs to form a reference clock.
"allreduce" module also computes dot(x,y) over a core rectangle.
"stencil_3d_7pts" module can compute y = A*x where A is the matrix from 7-point stencil.
The framework is
---
sync() // synchronize all PEs to sample the reference clock
tic() // record start time
PCG(n, tol, max_ite) // PCG on WSE
toc() // record end time
---
The run_pcg.py performs PCG on the WSE, not calls a sequence of spmv and dot.
It is faster than run.py because the nrm(r) is not transferred back to the host. WSE
can check the convergence without the host.
The tic() samples "time_start" and toc() samples "time_end". The sync() samples
"time_ref" which is used to shift "time_start" and "time_end".
The elapsed time is measured by
cycles_send = max(time_end) - min(time_start)
The overall runtime is computed via the following formula
time_send = (cycles_send / 0.85) *1.e-3 us
where a PE runs with clock speed 850MHz
Here is the list of parameters:
-m=<int> is the height of the core
-n=<int> is the width of the core
-k=<int> is size of x and y allocated in the core
--zDim=<int> is the number of f32 per PE, computed by y = A*x
zDim must be not greater than k
--max-ite=<int> number of iterations
--channels=<int> specifies the number of I/O channels, no bigger than 16
Reference:
[1] Gene H. Golub, Charles F. Van Loan, MATRIX COMPUTATIONS third edition,
Johns Hopkins
"""
import os
from typing import Optional
from pathlib import Path
import shutil
import subprocess
import random
import numpy as np
from scipy.sparse.linalg import eigs
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType, MemcpyOrder # pylint: disable=no-name-in-module
from cmd_parser import parse_args
from util import (
hwl_2_oned_colmajor,
oned_to_hwl_colmajor,
laplacian,
csr_7_pt_stencil,
)
from pcg import preconditionedConjugateGradient
def make_u48(words):
return words[0] + (words[1] << 16) + (words[2] << 32)
def csl_compile_core(
cslc: str,
width: int, # width of the core
height: int, # height of the core
pe_length: int,
blockSize: int,
file_config: str,
elf_dir: str,
fabric_width: int,
fabric_height: int,
core_fabric_offset_x: int, # fabric-offsets of the core
core_fabric_offset_y: int,
use_precompile: bool,
arch: Optional[str],
C0: int,
C1: int,
C2: int,
C3: int,
C4: int,
C5: int,
C6: int,
C7: int,
C8: int,
channels: int,
width_west_buf: int,
width_east_buf: int
):
if not use_precompile:
args = []
args.append(cslc) # command
args.append(file_config)
args.append(f"--fabric-dims={fabric_width},{fabric_height}")
args.append(f"--fabric-offsets={core_fabric_offset_x},{core_fabric_offset_y}")
args.append(f"--params=width:{width},height:{height},MAX_ZDIM:{pe_length}")
args.append(f"--params=BLOCK_SIZE:{blockSize}")
args.append(f"--params=C0_ID:{C0}")
args.append(f"--params=C1_ID:{C1}")
args.append(f"--params=C2_ID:{C2}")
args.append(f"--params=C3_ID:{C3}")
args.append(f"--params=C4_ID:{C4}")
args.append(f"--params=C5_ID:{C5}")
args.append(f"--params=C6_ID:{C6}")
args.append(f"--params=C7_ID:{C7}")
args.append(f"--params=C8_ID:{C8}")
args.append(f"-o={elf_dir}")
if arch is not None:
args.append(f"--arch={arch}")
args.append("--memcpy")
args.append(f"--channels={channels}")
args.append(f"--width-west-buf={width_west_buf}")
args.append(f"--width-east-buf={width_east_buf}")
print(f"subprocess.check_call(args = {args}")
subprocess.check_call(args)
else:
print("\tuse pre-compile ELFs")
def timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl):
# time_start = start time of spmv
time_start = np.zeros((height, width)).astype(int)
# time_end = end time of spmv
time_end = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_memcpy_hwl[(h, w, 0)]
word[1] = time_memcpy_hwl[(h, w, 1)]
word[2] = time_memcpy_hwl[(h, w, 2)]
time_start[(h,w)] = make_u48(word)
word[0] = time_memcpy_hwl[(h, w, 3)]
word[1] = time_memcpy_hwl[(h, w, 4)]
word[2] = time_memcpy_hwl[(h, w, 5)]
time_end[(h,w)] = make_u48(word)
# time_ref = reference clock
time_ref = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_ref_hwl[(h, w, 0)]
word[1] = time_ref_hwl[(h, w, 1)]
word[2] = time_ref_hwl[(h, w, 2)]
time_ref[(h, w)] = make_u48(word)
# adjust the reference clock by the propagation delay
# the right-bottom PE signals other PEs, the propagation delay is
# (h-1) - py + (w-1) - px
for py in range(height):
for px in range(width):
time_ref[(py, px)] = time_ref[(py, px)] - ((width+height-2)-(px + py))
# shift time_start and time_end by time_ref
time_start = time_start - time_ref
time_end = time_end - time_ref
# cycles_send = time_end[(h,w)] - time_start[(h,w)]
# 850MHz --> 1 cycle = (1/0.85) ns = (1/0.85)*1.e-3 us
# time_send = (cycles_send / 0.85) *1.e-3 us
#
min_time_start = time_start.min()
max_time_end = time_end.max()
cycles_send = max_time_end - min_time_start
time_send = (cycles_send / 0.85) *1.e-3
print(f"cycles_send = {cycles_send} cycles")
print(f"time_send = {time_send} us")
# How to compile
# python run_pcg.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
# --width-west-buf=0 --width-east-buf=0 --compile-only
# How to run
# python run_pcg.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
def main():
"""Main method to run the example code."""
random.seed(127)
args, dirname = parse_args()
cslc = "cslc"
if args.driver is not None:
cslc = args.driver
print(f"cslc = {cslc}")
width_west_buf = args.width_west_buf
width_east_buf = args.width_east_buf
channels = args.channels
assert channels <= 16, "only support up to 16 I/O channels"
assert channels >= 1, "number of I/O channels must be at least 1"
print(f"width_west_buf = {width_west_buf}")
print(f"width_east_buf = {width_east_buf}")
print(f"channels = {channels}")
height = args.m
width = args.n
pe_length = args.k
zDim = args.zDim
blockSize = args.blockSize
max_ite = args.max_ite
print(f"width = {width}, height = {height}, pe_length={pe_length}, zDim={zDim}, blockSize={blockSize}")
print(f"max_ite = {max_ite}")
assert pe_length >= 2, "the maximum size of z must be greater than 1"
assert zDim <= pe_length, "[0, zDim) cannot exceed the storage"
np.random.seed(2)
x = np.arange(height*width*zDim).reshape(height, width, zDim).astype(np.float32) + 100
x_1d = hwl_2_oned_colmajor(height, width, zDim, x, np.float32)
nrm2_x = np.linalg.norm(x_1d.ravel(), 2)
# |x0|_2 = 1
x_1d = x_1d / nrm2_x
x = x / nrm2_x
b = np.arange(height*width*pe_length).reshape(height, width, pe_length).astype(np.float32) + 1
b_1d = hwl_2_oned_colmajor(height, width, pe_length, b, np.float32)
# stencil coefficients has the following order
# {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
stencil_coeff = np.zeros((height, width, 7), dtype = np.float32)
for i in range(height):
for j in range(width):
stencil_coeff[(i, j, 0)] = -1 # west
stencil_coeff[(i, j, 1)] = -1 # east
stencil_coeff[(i, j, 2)] = -1 # south
stencil_coeff[(i, j, 3)] = -1 # north
stencil_coeff[(i, j, 4)] = -1 # bottom
stencil_coeff[(i, j, 5)] = -1 # top
stencil_coeff[(i, j, 6)] = 6 + j # center
# fabric-offsets = 1,1
fabric_offset_x = 1
fabric_offset_y = 1
# starting point of the core rectangle = (core_fabric_offset_x, core_fabric_offset_y)
# memcpy framework requires 3 columns at the west of the core rectangle
# memcpy framework requires 2 columns at the east of the core rectangle
core_fabric_offset_x = fabric_offset_x + 3 + width_west_buf
core_fabric_offset_y = fabric_offset_y
# (min_fabric_width, min_fabric_height) is the minimal dimension to run the app
min_fabric_width = (core_fabric_offset_x + width + 2 + 1 + width_east_buf)
min_fabric_height = (core_fabric_offset_y + height + 1)
fabric_width = 0
fabric_height = 0
if args.fabric_dims:
w_str, h_str = args.fabric_dims.split(",")
fabric_width = int(w_str)
fabric_height = int(h_str)
if fabric_width == 0 or fabric_height == 0:
fabric_width = min_fabric_width
fabric_height = min_fabric_height
assert fabric_width >= min_fabric_width
assert fabric_height >= min_fabric_height
# prepare the simulation
print('store ELFs and log files in the folder ', dirname)
# layout of a rectangle
code_csl = "layout_pcg.csl"
C0 = 0
C1 = 1
C2 = 2
C3 = 3
C4 = 4
C5 = 5
C6 = 6
C7 = 7
C8 = 8
csl_compile_core(
cslc,
width,
height,
pe_length,
blockSize,
code_csl,
dirname,
fabric_width,
fabric_height,
core_fabric_offset_x,
core_fabric_offset_y,
args.run_only,
args.arch,
C0,
C1,
C2,
C3,
C4,
C5,
C6,
C7,
C8,
channels,
width_west_buf,
width_east_buf
)
if args.compile_only:
print("COMPILE ONLY: EXIT")
return
A_csr = csr_7_pt_stencil(stencil_coeff, height, width, zDim)
# check if A is symmetric or not
A_csc = A_csr.tocsc(copy=True)
A_csc = A_csc.sorted_indices().astype(np.float32)
assert 0 == np.linalg.norm(A_csr.indptr - A_csc.indptr, np.inf), "A must be symmetric"
assert 0 == np.linalg.norm(A_csr.indices - A_csc.indices, np.inf), "A must be symmetric"
assert 0 == np.linalg.norm(A_csr.data - A_csc.data, np.inf), "A must be symmetric"
nrm_b = np.linalg.norm(b_1d.ravel(), 2)
eps = 1.e-3
tol = eps * nrm_b
print(f"|b| = {nrm_b}")
print(f"max_ite = {max_ite}")
print(f"eps = {eps}")
print(f"tol = {tol}")
xf_1d, xi, k = preconditionedConjugateGradient(A_csr, x_1d, b_1d, max_ite, tol)
print(f"[host] after PCG, xi = {xi}, k = {k}")
memcpy_dtype = MemcpyDataType.MEMCPY_32BIT
simulator = SdkRuntime(dirname, cmaddr=args.cmaddr)
symbol_b = simulator.get_id("b")
symbol_x = simulator.get_id("x")
symbol_xi = simulator.get_id("xi")
symbol_stencil_coeff = simulator.get_id("stencil_coeff")
symbol_time_buf_u16 = simulator.get_id("time_buf_u16")
symbol_time_ref = simulator.get_id("time_ref")
simulator.load()
simulator.run()
print(f"copy vector b and x0")
simulator.memcpy_h2d(symbol_b, b_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
simulator.memcpy_h2d(symbol_x, x_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print(f"copy 7 stencil coefficients")
stencil_coeff_1d = hwl_2_oned_colmajor(height, width, 7, stencil_coeff, np.float32)
simulator.memcpy_h2d(symbol_stencil_coeff, stencil_coeff_1d, 0, 0, width, height, 7,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print("step 0: enable timer")
simulator.launch("f_enable_timer", nonblock=False)
print("step 1: sync all PEs")
simulator.launch("f_sync", nonblock=False)
print("step 2: copy reference clock from reduce module")
simulator.launch("f_reference_timestamps", nonblock=False)
print("step 3: tic() records time_start")
simulator.launch("f_tic", nonblock=True)
print(f"step 4: Preconditioned Conjugate Gradient with max_ite={max_ite}, zDim={zDim}, tol={tol}")
simulator.launch("f_pcg", np.int16(zDim), np.float32(tol), np.int16(max_ite), nonblock=False)
print("step 5: toc() records time_end")
simulator.launch("f_toc", nonblock=False)
xi_wse = np.zeros(1, np.float32)
simulator.memcpy_d2h(xi_wse, symbol_xi, 0, 0, 1, 1, 1,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
xi = xi_wse[0]
print(f"[PCG] xi = |b - A*x|^2 = {xi}")
print("step 6: prepare (time_start, time_end)")
simulator.launch("f_memcpy_timestamps", nonblock=False)
print("step 7: D2H (time_start, time_end)")
time_memcpy_hwl_1d = np.zeros(height*width*6, np.uint32)
simulator.memcpy_d2h(time_memcpy_hwl_1d, symbol_time_buf_u16, 0, 0, width, height, 6,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_memcpy_hwl = oned_to_hwl_colmajor(height, width, 6, time_memcpy_hwl_1d, np.uint16)
print("step 8: D2H reference clock")
time_ref_1d = np.zeros(height*width*3, np.uint32)
simulator.memcpy_d2h(time_ref_1d, symbol_time_ref, 0, 0, width, height, 3,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_ref_hwl = oned_to_hwl_colmajor(height, width, 3, time_ref_1d, np.uint16)
print("step 9: D2H x[zDim]")
xf_wse_1d = np.zeros(height*width*zDim, np.float32)
simulator.memcpy_d2h(xf_wse_1d, symbol_x, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
simulator.stop()
if args.cmaddr is None:
# move simulation log and core dump to the given folder
dst_log = Path(f"{dirname}/sim.log")
src_log = Path("sim.log")
if src_log.exists():
shutil.move(src_log, dst_log)
dst_trace = Path(f"{dirname}/simfab_traces")
src_trace = Path("simfab_traces")
if dst_trace.exists():
shutil.rmtree(dst_trace)
if src_trace.exists():
shutil.move(src_trace, dst_trace)
timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl)
nrm2_xf = np.linalg.norm(xf_wse_1d.ravel(), 2)
print(f"|xf|_2 = {nrm2_xf}")
z = xf_1d.ravel() - xf_wse_1d.ravel()
nrm_z = np.linalg.norm(z, np.inf)
print(f"|xf_ref - xf_wse| = {nrm_z}")
np.testing.assert_allclose(xf_1d.ravel(), xf_wse_1d.ravel(), 1.e-5)
print("\nSUCCESS!")
vals, vecs = eigs(A_csr, k=1, which='SM')
min_eig = abs(vals[0])
vals, vecs = eigs(A_csr, k=1, which='LM')
max_eig = abs(vals[0])
print(f"min(eig) = {min_eig}")
print(f"max(eig) = {max_eig}")
print(f"cond(A) = {max_eig/min_eig}")
if 0:
debug_mod = debug_util(dirname, cmaddr=args.cmaddr)
print(f"=== dump rho with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
for py in range(height):
for px in range(width):
t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'rho', np.float32)
print(f"(py, px) = {py, px}, rho_ij = {t}")
if 0:
print(f"=== dump k with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
for py in range(height):
for px in range(width):
t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'k', np.int16)
print(f"(py, px) = {py, px}, k_ij = {t}")
if __name__ == "__main__":
main()