BiCGSTAB
Contents
BiCGSTAB¶
This example evaluates the performance of BiCGSTAB with a sparse matrix A
built by 7-point stencil. The kernel records the start
and end
of
BiCGSTAB by tsc counter. In addition the tsc counters of all PEs are not
synchronized in the beginning. To avoid the timing variation among those PEs,
sync()
synchronizes all PEs and samples the reference clock.
There are two implementations, kernel.csl
and kernel_bicgstab.csl
compiled by run.py
and run_bicgstab.py
respectively. Both kernels
define host-callable functions f_sync()
, f_tic()
and f_toc()
in
order to synchronize the PEs and record the timing.
The kernel kernel.csl
also defines a couple of host-callable functions to
implement BiCGSTAB algorithm, including
spmv()
: computeA*x
,A*p
andA*s
dot()
: computedot(r,r)
,dot(r,v)
,dot(t,s)
,dot(t,t)
anddot(r0,r)
others: update
x
,p
,r
,v
,s
andt
The kernel kernel_bicgstab.csl
defines a host-callable function f_bicgstab
which implements the BiCGSTAB on the WSE. The f_bicgstab
introduces a state
machine to call a sequence of spmv()
, dot()
and others. Such state machine
simply realizes the algorithm in run.py
.
The kernel allreduce/pe.csl
performs a reduction over the whole rectangle
to synchronize the PEs, then the bottom-right PE sends a signal to other PEs
to sample the reference clock.
The kernel stencil_3d_7pts/pe.csl
performs a matrix-vector product (spmv)
where the matrix has 7 diagonals corresponding to 7 point stencil. The stencil
coefficients can vary per PE, but must be the same for the local vector. The
user can change the coefficients based on the boundary condition or curvilinear
coordinate transformation.
The script run.py
or run_bicgstab.py
has the following parameters:
-k=<int>
specifies the maximum size of local vector.--zDim=<int>
specifies how many elements per PE are computed.--max-ite=<int>
specifies number of iterations in power method.--channels=<int>
specifies the number of I/O channels, no bigger than 16.
The tic()
samples “time_start” and toc()
samples “time_end”. The
sync()
samples “time_ref” which is used to adjust “time_start” and
“time_end”. The elapsed time (unit: cycles) is measured by
cycles_send = max(time_end) - min(time_start)
The overall runtime (us) is computed via the following formula
time_send = (cycles_send / 0.85) * 1.e-3 us
Note that the allreduce
and stencil_3d_7pts
modules used
in this code are identical to those used in 3D 7-Point Stencil SpMV.
layout.csl¶
// color map: memcpy + allreduce + stencil
//
// color var color var color var color var
// 0 C0 9 18 EN_REDUCE_2 27 reserved (memcpy)
// 1 C1 10 19 EN_REDUCE_3 28 reserved (memcpy)
// 2 C2 11 20 EN_REDUCE_4 29 reserved (memcpy)
// 3 C3 12 21 reserved (memcpy) 30 reserved (memcpy)
// 4 C4 13 22 reserved (memcpy) 31 reserved
// 5 C5 14 EN_STENCIL_1 23 reserved (memcpy) 32
// 6 C6 15 EN_STENCIL_2 24 33
// 7 C7 16 EN_STENCIL_3 25 34
// 8 C8 17 EN_REDUCE_1 26 35
//
// c0,c1,c2,c3,c4,c5,c6,c7 are internal colors of 7-point stencil
param C0_ID: i16;
param C1_ID: i16;
param C2_ID: i16;
param C3_ID: i16;
param C4_ID: i16;
param C5_ID: i16;
param C6_ID: i16;
param C7_ID: i16;
// c8 is an internal color of allreduce
param C8_ID: i16;
param MAX_ZDIM: i16; // maximum size of local vector x and y
param width: i16 ; // width of the core
param height: i16 ; // height of the core
param BLOCK_SIZE: i16; // size of temporary buffers for communication
const C0: color = @get_color(C0_ID);
const C1: color = @get_color(C1_ID);
const C2: color = @get_color(C2_ID);
const C3: color = @get_color(C3_ID);
const C4: color = @get_color(C4_ID);
const C5: color = @get_color(C5_ID);
const C6: color = @get_color(C6_ID);
const C7: color = @get_color(C7_ID);
const C8: color = @get_color(C8_ID);
// entrypoints of 7-point stenil
const EN_STENCIL_1: local_task_id = @get_local_task_id(14);
const EN_STENCIL_2: local_task_id = @get_local_task_id(15);
const EN_STENCIL_3: local_task_id = @get_local_task_id(16);
// entrypoints of allreduce
const EN_REDUCE_1: local_task_id = @get_local_task_id(17);
const EN_REDUCE_2: local_task_id = @get_local_task_id(18);
const EN_REDUCE_3: local_task_id = @get_local_task_id(19);
const EN_REDUCE_4: local_task_id = @get_local_task_id(20);
const stencil = @import_module( "../../csl-libs/stencil_3d_7pts/layout.csl", .{
.colors = [8]color{C0, C1, C2, C3, C4, C5, C6, C7},
.entrypoints = [3]local_task_id{EN_STENCIL_1, EN_STENCIL_2, EN_STENCIL_3},
.width = width,
.height = height
});
const reduce = @import_module( "../../csl-libs/allreduce/layout.csl", .{
.colors = [1]color{C8},
.entrypoints = [4]local_task_id{EN_REDUCE_1, EN_REDUCE_2, EN_REDUCE_3, EN_REDUCE_4},
.width = width,
.height = height
});
const memcpy = @import_module( "<memcpy/get_params>", .{
.width = width,
.height = height,
});
layout{
@comptime_assert(C0_ID < C1_ID);
@comptime_assert(C1_ID < C2_ID);
@comptime_assert(C2_ID < C3_ID);
@comptime_assert(C3_ID < C4_ID);
@comptime_assert(C4_ID < C5_ID);
@comptime_assert(C5_ID < C6_ID);
@comptime_assert(C6_ID < C7_ID);
@comptime_assert(C7_ID < C8_ID);
// step 1: configure the rectangle which does not include halo
@set_rectangle( width, height );
// step 2: compile csl code for a set of PEx.y and generate out_x_y.elf
// format: @set_tile_code(x, y, code.csl, param_binding);
var py: i16 = 0;
while(py < height) : (py +=1) {
var px: i16 = 0;
while(px < width) : (px +=1) {
const memcpyParams = memcpy.get_params(px);
const stencilParams = stencil.get_params(px, py);
const reduceParams = reduce.get_params(px, py);
var params: comptime_struct = .{
.memcpyParams = memcpyParams,
.reduceParams = reduceParams,
.MAX_ZDIM = MAX_ZDIM,
.BLOCK_SIZE = BLOCK_SIZE,
.stencilParams = stencilParams
};
@set_tile_code(px, py, "kernel.csl", params);
}
}
@export_name("b", [*]f32, true);
@export_name("x", [*]f32, true);
@export_name("stencil_coeff", [*]f32, true);
@export_name("time_buf_u16", [*]u16, true);
@export_name("time_ref", [*]u16, true);
@export_name("rho", [*]f32, true);
@export_name("xi", [*]f32, true);
@export_name("f_enable_timer", fn()void);
@export_name("f_tic", fn()void);
@export_name("f_toc", fn()void);
@export_name("f_memcpy_timestamps", fn()void);
@export_name("f_bicgstab_init", fn(i16)void);
@export_name("f_spmv_Ax", fn()void);
@export_name("f_residual", fn()void);
@export_name("f_init_rho", fn()void);
@export_name("f_spmv_Ap", fn()void);
@export_name("f_r0_dot_v", fn()void);
@export_name("f_update_alpha_s_t", fn()void);
@export_name("f_t_dot_s", fn()void);
@export_name("f_t_dot_t", fn()void);
@export_name("f_update_w_x_r_rho", fn()void);
@export_name("f_update_beta_p_xi", fn()void);
@export_name("f_sync", fn()void);
@export_name("f_reference_timestamps", fn()void);
} // end of layout
kernel.csl¶
param memcpyParams: comptime_struct;
param reduceParams: comptime_struct;
param stencilParams: comptime_struct;
param MAX_ZDIM: i16; // size of vector x
param BLOCK_SIZE: i16; // size of temporary buffers for communication
const timestamp = @import_module("<time>");
const math_lib = @import_module("<math>");
const blas_lib = @import_module("blas.csl");
// memcpy module reserves
// - input/output queue 0 and 1
const sys_mod = @import_module( "<memcpy/memcpy>", memcpyParams);
// allreduce uses input queue/output queue 1
const reduce_mod = @import_module( "../../csl-libs/allreduce/pe.csl", @concat_structs(reduceParams, .{
.f_callback = sys_mod.unblock_cmd_stream,
.queues = [1]u16{2},
.dest_dsr_ids = [1]u16{1},
.src0_dsr_ids = [1]u16{1},
.src1_dsr_ids = [1]u16{1}
}));
// output queue cannot overlap input queues
const stencil_mod = @import_module( "../../csl-libs/stencil_3d_7pts/pe.csl", @concat_structs(stencilParams, .{
.f_callback = sys_mod.unblock_cmd_stream,
.input_queues = [4]u16{4, 5, 6, 7},
.output_queues = if (@is_arch("wse3")) [4]u16{4, 5, 6, 7} else [1]u16{3},
.output_ut_id = 3,
.BLOCK_SIZE = BLOCK_SIZE,
.dest_dsr_ids = [2]u16{2,3},
.src0_dsr_ids = [1]u16{2},
.src1_dsr_ids = [2]u16{2,3}
}));
// tsc_size_words = 3
// starting time of H2D/D2H
var tscStartBuffer = @zeros([timestamp.tsc_size_words]u16);
// ending time of H2D/D2H
var tscEndBuffer = @zeros([timestamp.tsc_size_words]u16);
var b = @zeros([MAX_ZDIM]f32); // right-hand-side
var x = @zeros([MAX_ZDIM]f32); // approximated solution
var r0 = @zeros([MAX_ZDIM]f32); // initial residual
var r = @zeros([MAX_ZDIM]f32); // residual
var p = @zeros([MAX_ZDIM]f32); // Krylov space
var v = @zeros([MAX_ZDIM]f32); // Krylov space
var s = @zeros([MAX_ZDIM]f32); // can align with r
var t = @zeros([MAX_ZDIM]f32); // t = A * s
var dot = @zeros([1]f32); // dummy variable for f_sync
var xi = @zeros([1]f32);
var rho = @zeros([1]f32);
var rho_old = @zeros([1]f32);
var r0_dot_v = @zeros([1]f32);
var t_dot_s = @zeros([1]f32);
var t_dot_t = @zeros([1]f32);
var w: f32 = @as(f32,0); // w = (t,s)/(t,t)
var alpha: f32 = @as(f32,0); // alpha = rho/(r0, v)
var beta: f32 = @as(f32,0); // beta = (rho/rho_old)*(alpha/w)
// stencil coefficients are organized as
// {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
//
// The formula is
// c_west * x[i-1][j][k] + c_east * x[i+1][j][k] +
// c_south * x[i][j-1][k] + c_north * x[i][j+1][k] +
// c_bottom * x[i][j][k-1] + c_top * x[i][j][k+1] +
// c_center * x[i][j][k]
var stencil_coeff = @zeros([7]f32);
// time_buf_u16[0:5] = {tscStartBuffer, tscEndBuffer}
var time_buf_u16 = @zeros([timestamp.tsc_size_words*2]u16);
// reference clock inside allreduce module
var time_ref_u16 = @zeros([timestamp.tsc_size_words]u16);
var ptr_b: [*]f32 = &b;
var ptr_x: [*]f32 = &x;
var ptr_stencil_coeff: [*]f32 = &stencil_coeff;
var ptr_time_buf_u16: [*]u16 = &time_buf_u16;
var ptr_time_ref: [*]u16 = &time_ref_u16;
var ptr_rho: [*]f32 = ρ
var ptr_xi: [*]f32 = ξ
// size of local tensor during the BiCGSTAB
var n: i16 = 0;
var mem_b_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> b[i] });
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> x[i] });
var mem_r0_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r0[i] });
var mem_r_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r[i] });
var mem_p_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> p[i] });
var mem_v_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> v[i] });
var mem_s_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> s[i] });
var mem_t_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> t[i] });
fn f_enable_timer() void {
timestamp.enable_tsc();
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_tic() void {
timestamp.get_timestamp(&tscStartBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_toc() void {
timestamp.get_timestamp(&tscEndBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_memcpy_timestamps() void {
time_buf_u16[0] = tscStartBuffer[0];
time_buf_u16[1] = tscStartBuffer[1];
time_buf_u16[2] = tscStartBuffer[2];
time_buf_u16[3] = tscEndBuffer[0];
time_buf_u16[4] = tscEndBuffer[1];
time_buf_u16[5] = tscEndBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
// initialization of BiCGSTAB
// - setup the size of local tensor
// - setup the length of all DSDs
//
fn f_bicgstab_init(size:i16) void {
// setup the size of local tensor
n = size;
// set the length of all DSDs
mem_b_dsd = @set_dsd_length(mem_b_dsd, @bitcast(u16,n));
mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
mem_r0_dsd = @set_dsd_length(mem_r0_dsd, @bitcast(u16,n));
mem_r_dsd = @set_dsd_length(mem_r_dsd, @bitcast(u16,n));
mem_p_dsd = @set_dsd_length(mem_p_dsd, @bitcast(u16,n));
mem_v_dsd = @set_dsd_length(mem_v_dsd, @bitcast(u16,n));
mem_s_dsd = @set_dsd_length(mem_s_dsd, @bitcast(u16,n));
mem_t_dsd = @set_dsd_length(mem_t_dsd, @bitcast(u16,n));
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
// v = A*x = A*x0
fn f_spmv_Ax() void {
stencil_mod.spmv(n, &stencil_coeff, &x, &v);
}
// - r0 = b - v = b - A*x0
// where v = A*x is computed by f_spmv_Ax
// - r = r0
// - p = r0
// - xi = |r0|^2
fn f_residual() void {
// r0 = b - v
@fsubs(mem_r0_dsd, mem_b_dsd, mem_v_dsd);
// r = r0
@fmovs(mem_r_dsd, mem_r0_dsd);
// p = r0
@fmovs(mem_p_dsd, mem_r0_dsd);
// xi = |r0|^2
xi[0] = blas_lib.dot(n, &r, &r);
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
// rho = xi
fn f_init_rho() void {
rho[0] = xi[0];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
// v = A*p
fn f_spmv_Ap() void {
stencil_mod.spmv(n, &stencil_coeff, &p, &v);
}
// r0_dot_v = np.dot(r0,v)
fn f_r0_dot_v() void {
// r0_dot_v = dot(r0, v)
r0_dot_v[0] = blas_lib.dot(n, &r0, &v);
reduce_mod.allreduce(1, &r0_dot_v, reduce_mod.TYPE_BINARY_OP.ADD);
}
// alpha = rho / (r0, v)
// s = r - alpha*v
// t = A*s
fn f_update_alpha_s_t() void {
alpha = rho[0] / r0_dot_v[0];
var alpha_minus: f32 = -alpha;
// s = r - alpha*v
@fmacs(mem_s_dsd, mem_r_dsd, mem_v_dsd, alpha_minus);
// t = A*s
stencil_mod.spmv(n, &stencil_coeff, &s, &t);
}
// t_dot_s = np.dot(t,s)
fn f_t_dot_s() void {
t_dot_s[0] = blas_lib.dot(n, &t, &s);
reduce_mod.allreduce(1, &t_dot_s, reduce_mod.TYPE_BINARY_OP.ADD);
}
// t_dot_t = np.dot(t,t)
fn f_t_dot_t() void {
t_dot_t[0] = blas_lib.dot(n, &t, &t);
reduce_mod.allreduce(1, &t_dot_t, reduce_mod.TYPE_BINARY_OP.ADD);
}
// w = (t,s)/(t,t)
// x = x + alpha*p + w*s
// r = s - w*t
// rho_old = rho
// rho = (r0, r)
//
fn f_update_w_x_r_rho() void {
w = t_dot_s[0]/t_dot_t[0];
// update x = x + alpha*p + w*s
// i) x = x + alpha*p
@fmacs(mem_x_dsd, mem_x_dsd, mem_p_dsd, alpha);
// ii) x = x + w*s
@fmacs(mem_x_dsd, mem_x_dsd, mem_s_dsd, w);
// r = s - w * t
var w_minus: f32 = -w;
@fmacs(mem_r_dsd, mem_s_dsd, mem_t_dsd, w_minus);
// update rho
rho_old[0] = rho[0];
// rho = np.dot(r0,r)
rho[0] = blas_lib.dot(n, &r0, &r);
reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}
// beta = (rho/rho_old)*(alpha/w)
// p = r + beta*(p - w*v)
// xi = np.dot(r,r)
fn f_update_beta_p_xi() void {
beta = (rho[0]/rho_old[0])*(alpha/w);
// compute p = r + beta*(p - w*v)
// i) p = p - w*v
var w_minus: f32 = -w;
@fmacs(mem_p_dsd, mem_p_dsd, mem_v_dsd, w_minus);
// ii) p = r + beta*p
@fmacs(mem_p_dsd, mem_r_dsd, mem_p_dsd, beta);
// xi = np.dot(r,r)
xi[0] = blas_lib.dot(n, &r, &r);
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
fn f_sync() void {
reduce_mod.allreduce(1, &dot, reduce_mod.TYPE_BINARY_OP.ADD);
}
fn f_reference_timestamps() void {
time_ref_u16[0] = reduce_mod.tscRefBuffer[0];
time_ref_u16[1] = reduce_mod.tscRefBuffer[1];
time_ref_u16[2] = reduce_mod.tscRefBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
comptime {
@export_symbol(ptr_b, "b");
@export_symbol(ptr_x, "x");
@export_symbol(ptr_stencil_coeff, "stencil_coeff");
@export_symbol(ptr_time_buf_u16, "time_buf_u16");
@export_symbol(ptr_time_ref, "time_ref");
@export_symbol(ptr_rho, "rho");
@export_symbol(ptr_xi, "xi");
}
comptime{
@export_symbol(f_enable_timer);
@export_symbol(f_tic);
@export_symbol(f_toc);
@export_symbol(f_memcpy_timestamps);
@export_symbol(f_bicgstab_init);
@export_symbol(f_spmv_Ax);
@export_symbol(f_residual);
@export_symbol(f_init_rho);
@export_symbol(f_spmv_Ap);
@export_symbol(f_r0_dot_v);
@export_symbol(f_update_alpha_s_t);
@export_symbol(f_t_dot_s);
@export_symbol(f_t_dot_t);
@export_symbol(f_update_w_x_r_rho);
@export_symbol(f_update_beta_p_xi);
@export_symbol(f_sync);
@export_symbol(f_reference_timestamps);
}
blas.csl¶
const math_lib = @import_module("<math>");
const dummy = @zeros([1]i16);
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> dummy[i] });
var mem_y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> dummy[i] });
// (alpha, inv_alpha) = approx(x) approximates x by positive alpha such that
// x = alpha * (x/alpha)
// where alpha = 2^(exp) and (x/alpha) has no precision loss.
//
// If x is a normal number, |x| = 2^(exp) * r, then alpha = 2^(exp)
//
// The purpose of this approximation is for nrm2(x).
// nrm2(x) can hit overflow if we just do square-sum.
// The simple workaround is to square-sum of x/max(x).
// However the division is very expensive, about 50 cycles.
// We just need a number alpha close to max(x) such that x/alpha = O(1).
// The cost of approx is about 11 instructions, much cheaper than div.
//
// Assume x = sign * 2^(E-127) * mantissa, "approx" handles the following
// four cases:
//
// case 1: x is a normal number
// 0 < E < 255
// x is normal
// x = sign * 2^(E-127) * 1.b22b21... b1b0
// min(x) = 0x0080 0000
// = 2^(-126) = 1.1754943508 x 10^(-38)
// max(x) = 0x7f7f ffff
// = 2^127 x (2 - 2^(-23)) = 3.4028234664 * 10^38
//
// case 2: x is a subnormal number
// E = 0 and mantissa > 0
// x = sign * 2^(-127) * b22.b21... b1b0
// = sign * 2^(-126) * 0.b22b21... b1b0
// min(x) = 0x000 0001
// = 2^(-126) x 2^(-23) = 2^(-149) = 1.4*10^(-45)
// max(x) = 007f ffff
// = 2^(-126) x (1 - 2^(-23)) = 1.17 x 10^(-38)
//
// case 3: x = 0
// E = 0 and mantissa = 0
//
// case 4: x = inf or nan
// inf: E = 255 and mantissa = 0
// nan: E = 255 and mantissa > 0
//
// Example 1: x = 14.0
// alpha_u32 = 0x41000000
// inv_alpha_u32 = 0x3e000000
// alpha = 8.
// inv_alpha = 0.125
// Example 2: x = 0.15625
// alpha_u32 = 0x3e000000
// inv_alpha_u32 = 0x41000000
// alpha = 0.125
// inv_alpha = 8.0
// Example 3: x = 1.e-43
// alpha_u32 = 0x800000
// inv_alpha_u32 = 0x7e800000
// alpha = 1.1754943508222875e-38
// inv_alpha = 8.507059173023462e+37
// Example 4: x = 1.0/0.0 (np.float32(np.inf))
// alpha_u32 = 0x3f800000
// inv_alpha_u32 = 0x3f800000
// alpha = 1.0
// inv_alpha = 1.0
// Example 5: x = 0.0/0.0 (np.float32(np.nan))
// alpha_u32 = 0x3f800000
// inv_alpha_u32 = 0x3f800000
// alpha = 1.0
// inv_alpha = 1.0
//
fn approx(x: f32, alpha: *f32, inv_alpha: *f32) void {
const MASK_EXPONENT: u32 = 0x7F800000;
const MASK_MANTISSA: u32 = 0x007FFFFF;
const x_u32: u32 = @bitcast(u32, x);
// x is presented by (sign | E | mantissa)
// sign has 1 bit, E has 8 bits and mantissa has 23 bits
// E = (x & MASK_EXPONEN) >> 23
const exp: u32 = (x_u32 & MASK_EXPONENT);
// mantissa = b22b21...b1b0 has 23-bit, need u32
const mantissa: u32 = (x_u32) & MASK_MANTISSA;
// E has 8-bit, use u16
var E: u16 = @as(u16, (exp >> 23));
// case 1: 0 < E < 255, x is normal
// the following if-clause handles case 2, 3 and 4
if (0 == E){
if (0 == mantissa){
// case 3: x = 0
// reset alpha = 1
E = 127;
}else{
// case 2: x is subnormal
// reset alpha= 2^(-126)
E = 1;
}
}
if (255 == E){
// case 4: x = inf or NAN
// reset alpha = 1
E = 127;
}
// alpha and inv_alpha are u32
// alpha = 2^(E - 127)
// inv_alpha = 1/alpha = 2^(127 - E)
var alpha_u32: u32 = (@as(u32, E) << 23);
var inv_alpha_u32: u32 = @as(u32, (254 - E)) << 23;
alpha.* = @bitcast(f32, alpha_u32);
inv_alpha.* = @bitcast(f32, inv_alpha_u32);
}
// kernel of ymax = max(|y|)
// return max(ymax, |yval|)
fn reduce_fabs(yval : f32, ymax : *f32) f32 {
var yreg: f32 = math_lib.abs(yval);
if (yreg > ymax.*){
return yreg;
}else{
return ymax.*;
}
}
// kernel of sum = reduce( (y/alpha)^2, +)
// return sum + (yval/alpha)**2
fn reduce_scale_square(yval: f32, inv_alpha: f32, sum: *f32) f32 {
var yreg: f32 = yval * inv_alpha;
return sum.* + yreg * yreg;
}
// return |y[0:n]|_2
fn nrm2(n:i16, y: [*]f32) f32 {
var alpha: f32;
var inv_alpha: f32;
// step 1: ymax = max(|y|)
var ymax: f32 = @as(f32,0);
mem_y_dsd = @set_dsd_base_addr(mem_y_dsd, y);
mem_y_dsd = @set_dsd_length(mem_y_dsd, @bitcast(u16,n));
@map(reduce_fabs, mem_y_dsd, &ymax, &ymax);
// step 2: ymax = alpha * (ymax/alpha)
approx(ymax, &alpha, &inv_alpha);
// step 3: sum = reduce( (y/alpha)^2, +)
var sum: f32 = @as(f32, 0);
@map(reduce_scale_square, mem_y_dsd, inv_alpha, &sum, &sum);
// step 4: nrm2 = |y|_2 locally
sum = math_lib.sqrt(sum);
return (sum * alpha);
}
// kernel of sum = reduce( (y/alpha)^2, +)
// return sum + (yval/alpha)**2
fn reduce_dot(xval: f32, yval: f32, sum: *f32) f32 {
return sum.* + xval * yval;
}
// return dot(x,y)
fn dot(n:i16, x: [*]f32, y: [*]f32) f32 {
mem_x_dsd = @set_dsd_base_addr(mem_x_dsd, x);
mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
mem_y_dsd = @set_dsd_base_addr(mem_y_dsd, y);
mem_y_dsd = @set_dsd_length(mem_y_dsd, @bitcast(u16,n));
var sum: f32 = @as(f32, 0);
@map(reduce_dot, mem_x_dsd, mem_y_dsd, &sum, &sum);
return sum;
}
run.py¶
#!/usr/bin/env cs_python
# pylint: disable=too-many-function-args
""" test BiCGSTAB of a sparse matrix A built by 7-point stencil
The following BiCGSTAB algorithm is modified from [1].
---
The algorithm of unpreconditioned BiCGSTAB is
Given b, x0 and tol = eps*|b|
k = 0
x = x0
r0 = b - A*x
r = r0
p = r0
xi = |r|^2 = (r0, r0)
rho = xi
while xi > tol*tol and k < max_ite
k = k + 1
v = A*p
alpha = rho/(r0, v)
s = r - alpha*v
t = A*s
w = (t,s)/(t,t)
x = x + alpha*p + w*s
r = s - w*t
rho_old = rho
rho = (r0, r)
beta = (rho/rho_old)*(alpha/w)
p = r + beta*(p - w*v)
xi = |r|^2
end
x approximates the solution of a linear system Ax = b
The sparse matrix A is built by a 7-point stenil.
The 7-point stencil is defined by the following:
---
The Laplacian operator L on 3-dimensional domain can be represented by 7-point
stencil based on the standard 2nd order Finite Difference Method. The operator form
with Dirichlet boundary conditions can be written by
L[u](i,j,k) = u(i+1, j, k ) + u(i-1, j, k ) +
u(i, j+1,k ) + u(i, j-1, k ) +
u(i, j, k+1) + u(i, j, k-1) +
-6*u(i, j, k)
In general the coefficients of those 7 points can vary. To minimize the memory
consumption, this example assumes the coefficients are independent of index k and
whole vector u(i,j,:) is placed in one PE (px=j, py=i).
The above formula can be re-written by
c_west * x[i-1][j ][k ] + c_east * x[i+1][j ][k ] +
c_south * x[i ][j-1][k ] + c_north * x[i ][j+1][k ] +
c_bot * x[i ][j ][k-1] + c_top * x[i ][j ][k+1] +
c_center * x[i][j][k]
Each PE only holds 7 coefficients organized by c_west, c_east, c_south, c_north,
c_bot, c_top and c_center.
This example provides two modules, one is allreduce and the other is stencil_3d_7pts.
"allreduce" module can synchronize all PEs to form a reference clock.
"allreduce" module also computes dot(x,y) over a core rectangle.
"stencil_3d_7pts" module can compute y = A*x where A is the matrix from 7-point stencil.
The framework is
---
sync() // synchronize all PEs to sample the reference clock
tic() // record start time
r = b - A*x
for k = ...
v = A*p
update s
t = A*s
update x
update r
update xi=(r,r)
update p
D2H(xi) to check convergence
end
toc() // record end time
---
This framework does transfer the nrm(r) back to host for each iteration of BiCGSTAB.
So the I/O pressure is high, not good for performance. The run_bicgstab.py removes
this IO pressure.
The tic() samples "time_start" and toc() samples "time_end". The sync() samples
"time_ref" which is used to shift "time_start" and "time_end".
The elapsed time is measured by
cycles_send = max(time_end) - min(time_start)
The overall runtime is computed via the following formula
time_send = (cycles_send / 0.85) *1.e-3 us
where a PE runs with clock speed 850MHz
Here is the list of parameters:
-m=<int> is the height of the core
-n=<int> is the width of the core
-k=<int> is size of x and y allocated in the core
--zDim=<int> is the number of f32 per PE, computed by y = A*x
zDim must be not greater than k
--max-ite=<int> number of iterations
--channels=<int> specifies the number of I/O channels, no bigger than 16
WARNING: BiCGSTAB may not converge if rho=(rj, r0) is close to zero.
If it does happen, we need to restart the BiCGSTAB.
The algorithm here does not provide the restart.
Reference:
[1] H. A. VAN DER VORST, BI-CGSTAB: A FAST AND SMOOTHLY CONVERGING VARIANT
OF BI-CG FOR THE SOLUTION OF NONSYMMETRIC LINEAR SYSTEMS,
SIAM J. ScI. STAT. COMPUT. Vol. 13, No. 2, pp. 631-644, March 1992
"""
import os
from typing import Optional
from pathlib import Path
import shutil
import subprocess
import random
import math
import numpy as np
from scipy.sparse import linalg as sparse_LA
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType, MemcpyOrder # pylint: disable=no-name-in-module
from cmd_parser import parse_args
from util import (
hwl_2_oned_colmajor,
oned_to_hwl_colmajor,
laplacian,
csr_7_pt_stencil,
)
from bicgstab import bicgstab
def make_u48(words):
return words[0] + (words[1] << 16) + (words[2] << 32)
def csl_compile_core(
cslc: str,
width: int, # width of the core
height: int, # height of the core
pe_length: int,
blockSize: int,
file_config: str,
elf_dir: str,
fabric_width: int,
fabric_height: int,
core_fabric_offset_x: int, # fabric-offsets of the core
core_fabric_offset_y: int,
use_precompile: bool,
arch: Optional[str],
C0: int,
C1: int,
C2: int,
C3: int,
C4: int,
C5: int,
C6: int,
C7: int,
C8: int,
channels: int,
width_west_buf: int,
width_east_buf: int
):
if not use_precompile:
args = []
args.append(cslc) # command
args.append(file_config)
args.append(f"--fabric-dims={fabric_width},{fabric_height}")
args.append(f"--fabric-offsets={core_fabric_offset_x},{core_fabric_offset_y}")
args.append(f"--params=width:{width},height:{height},MAX_ZDIM:{pe_length}")
args.append(f"--params=BLOCK_SIZE:{blockSize}")
args.append(f"--params=C0_ID:{C0}")
args.append(f"--params=C1_ID:{C1}")
args.append(f"--params=C2_ID:{C2}")
args.append(f"--params=C3_ID:{C3}")
args.append(f"--params=C4_ID:{C4}")
args.append(f"--params=C5_ID:{C5}")
args.append(f"--params=C6_ID:{C6}")
args.append(f"--params=C7_ID:{C7}")
args.append(f"--params=C8_ID:{C8}")
args.append(f"-o={elf_dir}")
if arch is not None:
args.append(f"--arch={arch}")
args.append("--memcpy")
args.append(f"--channels={channels}")
args.append(f"--width-west-buf={width_west_buf}")
args.append(f"--width-east-buf={width_east_buf}")
print(f"subprocess.check_call(args = {args}")
subprocess.check_call(args)
else:
print("\tuse pre-compile ELFs")
def timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl):
# time_start = start time of spmv
time_start = np.zeros((height, width)).astype(int)
# time_end = end time of spmv
time_end = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_memcpy_hwl[(h, w, 0)]
word[1] = time_memcpy_hwl[(h, w, 1)]
word[2] = time_memcpy_hwl[(h, w, 2)]
time_start[(h,w)] = make_u48(word)
word[0] = time_memcpy_hwl[(h, w, 3)]
word[1] = time_memcpy_hwl[(h, w, 4)]
word[2] = time_memcpy_hwl[(h, w, 5)]
time_end[(h,w)] = make_u48(word)
# time_ref = reference clock
time_ref = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_ref_hwl[(h, w, 0)]
word[1] = time_ref_hwl[(h, w, 1)]
word[2] = time_ref_hwl[(h, w, 2)]
time_ref[(h, w)] = make_u48(word)
# adjust the reference clock by the propagation delay
# the right-bottom PE signals other PEs, the propagation delay is
# (h-1) - py + (w-1) - px
for py in range(height):
for px in range(width):
time_ref[(py, px)] = time_ref[(py, px)] - ((width+height-2)-(px + py))
# shift time_start and time_end by time_ref
time_start = time_start - time_ref
time_end = time_end - time_ref
# cycles_send = time_end[(h,w)] - time_start[(h,w)]
# 850MHz --> 1 cycle = (1/0.85) ns = (1/0.85)*1.e-3 us
# time_send = (cycles_send / 0.85) *1.e-3 us
#
min_time_start = time_start.min()
max_time_end = time_end.max()
cycles_send = max_time_end - min_time_start
time_send = (cycles_send / 0.85) *1.e-3
print(f"cycles_send = {cycles_send} cycles")
print(f"time_send = {time_send} us")
# How to compile
# python run.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
# --width-west-buf=0 --width-east-buf=0 --compile-only
# How to run
# python run.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
# --width-west-buf=0 --width-east-buf=0 --run-only --zDim=5 --max-ite=1
def main():
"""Main method to run the example code."""
random.seed(127)
args, dirname = parse_args()
cslc = "cslc"
if args.driver is not None:
cslc = args.driver
print(f"cslc = {cslc}")
width_west_buf = args.width_west_buf
width_east_buf = args.width_east_buf
channels = args.channels
assert channels <= 16, "only support up to 16 I/O channels"
assert channels >= 1, "number of I/O channels must be at least 1"
print(f"width_west_buf = {width_west_buf}")
print(f"width_east_buf = {width_east_buf}")
print(f"channels = {channels}")
height = args.m
width = args.n
pe_length = args.k
zDim = args.zDim
blockSize = args.blockSize
max_ite = args.max_ite
print(f"width = {width}, height = {height}, pe_length={pe_length}, zDim={zDim}, blockSize={blockSize}")
print(f"max_ite = {max_ite}")
assert pe_length >= 2, "the maximum size of z must be greater than 1"
assert zDim <= pe_length, "[0, zDim) cannot exceed the storage"
np.random.seed(2)
if 1:
x = np.zeros((height,width,pe_length), dtype = np.float32)
else:
x = np.arange(height*width*zDim).reshape(height, width, zDim).astype(np.float32) + 100
x_1d = hwl_2_oned_colmajor(height, width, zDim, x, np.float32)
nrm2_x = np.linalg.norm(x_1d.ravel(), 2)
# |x0|_2 = 1
if nrm2_x > 0:
x_1d = x_1d / nrm2_x
x = x / nrm2_x
b = np.arange(height*width*pe_length).reshape(height, width, pe_length).astype(np.float32) + 1
b_1d = hwl_2_oned_colmajor(height, width, pe_length, b, np.float32)
# stencil coefficients has the following order
# {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
# BiCGSTAB does not converge, it hits serious breakdown when
# rho = (r0, rj) is close to zero.
# Such behavior is confirmed by scipy.sparse.linalg.bicgstab
stencil_coeff = np.zeros((height, width, 7), dtype = np.float32)
for i in range(height):
for j in range(width):
stencil_coeff[(i, j, 0)] = -1 # west
stencil_coeff[(i, j, 1)] = -1 # east
stencil_coeff[(i, j, 2)] = -1 # south
stencil_coeff[(i, j, 3)] = -1 # north
stencil_coeff[(i, j, 4)] = -1 # bottom
stencil_coeff[(i, j, 5)] = -1 # top
stencil_coeff[(i, j, 6)] = 6 + j # center
# fabric-offsets = 1,1
fabric_offset_x = 1
fabric_offset_y = 1
# starting point of the core rectangle = (core_fabric_offset_x, core_fabric_offset_y)
# memcpy framework requires 3 columns at the west of the core rectangle
# memcpy framework requires 2 columns at the east of the core rectangle
core_fabric_offset_x = fabric_offset_x + 3 + width_west_buf
core_fabric_offset_y = fabric_offset_y
# (min_fabric_width, min_fabric_height) is the minimal dimension to run the app
min_fabric_width = (core_fabric_offset_x + width + 2 + 1 + width_east_buf)
min_fabric_height = (core_fabric_offset_y + height + 1)
fabric_width = 0
fabric_height = 0
if args.fabric_dims:
w_str, h_str = args.fabric_dims.split(",")
fabric_width = int(w_str)
fabric_height = int(h_str)
if fabric_width == 0 or fabric_height == 0:
fabric_width = min_fabric_width
fabric_height = min_fabric_height
assert fabric_width >= min_fabric_width
assert fabric_height >= min_fabric_height
# prepare the simulation
print('store ELFs and log files in the folder ', dirname)
# layout of a rectangle
code_csl = "layout.csl"
C0 = 0
C1 = 1
C2 = 2
C3 = 3
C4 = 4
C5 = 5
C6 = 6
C7 = 7
C8 = 8
csl_compile_core(
cslc,
width,
height,
pe_length,
blockSize,
code_csl,
dirname,
fabric_width,
fabric_height,
core_fabric_offset_x,
core_fabric_offset_y,
args.run_only,
args.arch,
C0,
C1,
C2,
C3,
C4,
C5,
C6,
C7,
C8,
channels,
width_west_buf,
width_east_buf
)
if args.compile_only:
print("COMPILE ONLY: EXIT")
return
A_csr = csr_7_pt_stencil(stencil_coeff, height, width, zDim)
[nrows, ncols] = A_csr.shape
nnz = A_csr.nnz
print(f"Load matrix A, {nrows}-by-{ncols} with {nnz} nonzeros")
if nrows < 1000:
A = A_csr.todense()
# s is singular value in descending order
u, s, vh = np.linalg.svd(A, full_matrices=False)
min_svd = min(s)
max_svd = max(s)
print(f"min(svd) = {min_svd}")
print(f"max(svd) = {max_svd}")
print(f"cond(A) = {max_svd/min_svd}")
nrm_b = np.linalg.norm(b_1d.ravel(), 2)
eps = 1.e-3
tol = eps * nrm_b
print(f"|b| = {nrm_b}")
print(f"max_ite = {max_ite}")
print(f"eps = {eps}")
print(f"tol = {tol}")
xf_1d, xi, k = bicgstab(A_csr, x_1d, b_1d, max_ite, tol)
print(f"[host] after BiCGSTAB, xi = {xi}, k = {k}")
memcpy_dtype = MemcpyDataType.MEMCPY_32BIT
simulator = SdkRuntime(dirname, cmaddr=args.cmaddr)
symbol_b = simulator.get_id("b")
symbol_x = simulator.get_id("x")
symbol_xi = simulator.get_id("xi")
symbol_stencil_coeff = simulator.get_id("stencil_coeff")
symbol_time_buf_u16 = simulator.get_id("time_buf_u16")
symbol_time_ref = simulator.get_id("time_ref")
simulator.load()
simulator.run()
print(f"copy vector b and x0")
simulator.memcpy_h2d(symbol_b, b_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
simulator.memcpy_h2d(symbol_x, x_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print(f"copy 7 stencil coefficients")
stencil_coeff_1d = hwl_2_oned_colmajor(height, width, 7, stencil_coeff, np.float32)
simulator.memcpy_h2d(symbol_stencil_coeff, stencil_coeff_1d, 0, 0, width, height, 7,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print("step 0: enable timer")
simulator.launch("f_enable_timer", nonblock=False)
print("step 1: sync all PEs")
simulator.launch("f_sync", nonblock=False)
print("step 2: copy reference clock from reduce module")
simulator.launch("f_reference_timestamps", nonblock=False)
print("step 3: tic() records time_start")
simulator.launch("f_tic", nonblock=True)
print(f"step 4: BiCGSTAB with max_ite = {max_ite}, zDim = {zDim}")
print("step 4.1: initialization")
# - setup the length of all DSDs
# - setup the size of local tensor
simulator.launch("f_bicgstab_init", np.int16(zDim), nonblock=False)
k = 0
print("step 4.2: compute r0=b-A*x0, r=r0, p=r0, and rho=xi=|r0|^2")
# v = A*x0
simulator.launch("f_spmv_Ax", nonblock=False)
# r0 = b - v = b - A*x0
# r = r0
# p = r0
# xi = |r0|^2
simulator.launch("f_residual", nonblock=False)
# rho = xi = (r0, r0)
simulator.launch("f_init_rho", nonblock=False)
# [optional] D2H(xi)
xi_wse = np.zeros(1, np.float32)
simulator.memcpy_d2h(xi_wse, symbol_xi, 0, 0, 1, 1, 1,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
xi = xi_wse[0]
print(f"[BiCGSTAB] iter {k}: xi = {xi}")
# if |r| < tol, then exit
while ( (xi > tol*tol) and (k < max_ite) ):
k = k + 1
print("step 4.3: v = A*p")
simulator.launch("f_spmv_Ap", nonblock=False)
print("step 4.4: compute (r0, v)")
# r0_dot_v = dot(r0, v)
simulator.launch("f_r0_dot_v", nonblock=False)
print("step 4.4: update alpha, s and t")
# alpha = rho / (r0, v)
# s = r - alpha*v
# t = A*s
simulator.launch("f_update_alpha_s_t", nonblock=False)
print("step 4.5: compute (t, s)")
# t_dot_s = np.dot(t,s)
simulator.launch("f_t_dot_s", nonblock=False)
print("step 4.6: compute (t, t)")
# t_dot_t = np.dot(t,t)
simulator.launch("f_t_dot_t", nonblock=False)
print("step 4.7: update w, x, r and rho ")
# w = (t,s)/(t,t)
# x = x + alpha*p + w*s
# r = s - w*t
# rho_old = rho
# rho = (r0, r)
simulator.launch("f_update_w_x_r_rho", nonblock=False)
# beta = (rho/rho_old)*(alpha/w)
# p = r + beta*(p - w*v)
# xi = np.dot(r,r)
simulator.launch("f_update_beta_p_xi", nonblock=False)
# [optional] D2H(xi)
simulator.memcpy_d2h(xi_wse, symbol_xi, 0, 0, 1, 1, 1,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
xi = xi_wse[0]
print(f"[BiCGSTAB] iter {k}: xi = {xi}")
print("step 5: toc() records time_end")
simulator.launch("f_toc", nonblock=False)
print("step 6: prepare (time_start, time_end)")
simulator.launch("f_memcpy_timestamps", nonblock=False)
print("step 7: D2H (time_start, time_end)")
time_memcpy_hwl_1d = np.zeros(height*width*6, np.uint32)
simulator.memcpy_d2h(time_memcpy_hwl_1d, symbol_time_buf_u16, 0, 0, width, height, 6,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_memcpy_hwl = oned_to_hwl_colmajor(height, width, 6, time_memcpy_hwl_1d, np.uint16)
print("step 8: D2H reference clock")
time_ref_1d = np.zeros(height*width*3, np.uint32)
simulator.memcpy_d2h(time_ref_1d, symbol_time_ref, 0, 0, width, height, 3,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_ref_hwl = oned_to_hwl_colmajor(height, width, 3, time_ref_1d, np.uint16)
print("step 9: D2H x[zDim]")
xf_wse_1d = np.zeros(height*width*zDim, np.float32)
simulator.memcpy_d2h(xf_wse_1d, symbol_x, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
simulator.stop()
if args.cmaddr is None:
# move simulation log and core dump to the given folder
dst_log = Path(f"{dirname}/sim.log")
src_log = Path("sim.log")
if src_log.exists():
shutil.move(src_log, dst_log)
dst_trace = Path(f"{dirname}/simfab_traces")
src_trace = Path("simfab_traces")
if dst_trace.exists():
shutil.rmtree(dst_trace)
if src_trace.exists():
shutil.move(src_trace, dst_trace)
timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl)
nrm2_xf = np.linalg.norm(xf_wse_1d.ravel(), 2)
print(f"|xf|_2 = {nrm2_xf}")
print(f"|b - A*xf|_2 = {math.sqrt(xi)}")
print(f"number of iterations = {k}")
z = xf_1d.ravel() - xf_wse_1d.ravel()
nrm_z = np.linalg.norm(z, np.inf)
print(f"|xf_ref - xf_wse| = {nrm_z}")
np.testing.assert_allclose(xf_1d.ravel(), xf_wse_1d.ravel(), 1.e-5)
print("\nSUCCESS!")
print(f"==== measure the residual b - A*x by |.|_inf")
# r = b - A*xf
r = b_1d - A_csr.dot(xf_wse_1d);
nrm_r = np.linalg.norm(r, np.inf)
nrm_b = np.linalg.norm(b_1d, np.inf)
nrm_x = np.linalg.norm(xf_wse_1d, np.inf)
nrm_A = sparse_LA.norm(A_csr, np.inf)
print(f"|xf| = {nrm_x}")
print(f"|b| = {nrm_b}")
print(f"|A| = {nrm_A}")
print(f"|b - A*xf| = {nrm_r}")
rel_err = nrm_r/(nrm_A * nrm_x + nrm_b)
print(f"|b-A*x|/(|A|*|x|+|b|) = {rel_err}")
# only check the relative error if max_ite is big enough
# i.e. BiCGSTAB converges before reaching max_ite
if k < max_ite:
assert eps > rel_err, "relative error is too large"
if 0:
debug_mod = debug_util(dirname, cmaddr=args.cmaddr)
print(f"=== dump rho with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
for py in range(height):
for px in range(width):
t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'rho', np.float32)
print(f"(py, px) = {py, px}, rho_ij = {t}")
if __name__ == "__main__":
main()
cmd_parser.py¶
# This is not a real test, but a module that gets imported in other tests.
"""command parser for bandwidthTest
-m <int> number of rows of the core rectangle
-n <int> number of columns of the core rectangle
-k <int> number of elements of local tensor
--zDim <int> number of elements to compute y=A*x
--blockSize <int> the size of temporary buffers for communication
--latestlink working directory
--driver path to CSL compiler
--fabric-dims fabric dimension of a WSE
--cmaddr IP address of a WSE
--channels number of I/O channels, 1 <= channels <= 16
--width-west-buf number of columns of the buffer in the west of the core rectangle
--width-east-buf number of columns of the buffer in the east of the core rectangle
--compile-only compile ELFs
--run-only run the test with precompiled binary
"""
import os
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
default=1, type=int,
help="number of rows")
parser.add_argument(
"-n",
default=1, type=int,
help="number of columns")
parser.add_argument(
"-k",
default=1, type=int,
help="size of local tensor, no less than 2")
parser.add_argument(
"--zDim",
default=2, type=int,
help="[0 zDim-1) is the domain of Laplacian")
parser.add_argument(
"--max-ite",
default=1, type=int,
help="maximum number of iterations of power method")
parser.add_argument(
"--latestlink",
help="folder to contain the log files (default: latest)")
parser.add_argument(
"-d",
"--driver",
help="The path to the CSL compiler")
parser.add_argument(
"--compile-only",
help="Compile only", action="store_true")
parser.add_argument(
"--fabric-dims",
help="Fabric dimension, i.e. <W>,<H>")
parser.add_argument(
"--cmaddr",
help="CM address and port, i.e. <IP>:<port>")
parser.add_argument(
"--run-only",
help="Run only", action="store_true")
parser.add_argument(
"--arch",
help="wse2 or wse3. Default is wse2 when not supplied.")
parser.add_argument(
"--width-west-buf",
default=0, type=int,
help="width of west buffer")
parser.add_argument(
"--width-east-buf",
default=0, type=int,
help="width of east buffer")
parser.add_argument(
"--channels",
default=1, type=int,
help="number of I/O channels, between 1 and 16")
parser.add_argument(
"--blockSize",
default=2, type=int,
help="the size of temporary buffers for communication")
args = parser.parse_args()
logs_dir = "latest"
if args.latestlink:
logs_dir = args.latestlink
dir_exist = os.path.isdir(logs_dir)
if dir_exist:
print(f"{logs_dir} already exists")
else:
print(f"create {logs_dir} to store log files")
os.mkdir(logs_dir)
return args, logs_dir
util.py¶
import os
import numpy as np
from scipy.sparse import coo_matrix
def COL_MAJOR(h, w, l, height, width, pe_length):
assert 0 <= h and h < height
assert 0 <= w and w < width
assert 0 <= l and l < pe_length
return (h + w*height + l*height*width)
def hwl_2_oned_colmajor(
height: int,
width: int,
pe_length: int,
A_hwl: np.ndarray,
dtype
):
"""
Given a 3-D tensor A[height][width][pe_length], transform it to
1D array by column-major
"""
A_1d = np.zeros(height*width*pe_length, dtype)
idx = 0
for l in range(pe_length):
for w in range(width):
for h in range(height):
A_1d[idx] = A_hwl[(h, w, l)]
idx = idx + 1
return A_1d
def oned_to_hwl_colmajor(
height: int,
width: int,
pe_length: int,
A_1d: np.ndarray,
dtype
):
"""
Given a 1-D tensor A_1d[height*width*pe_length], transform it to
3-D tensor A[height][width][pe_length] by column-major
"""
if dtype == np.float32:
# only support f32 to f32
assert A_1d.dtype == np.float32, "only support f32 to f32"
A_hwl = np.reshape(A_1d, (height, width, pe_length), order='F')
elif dtype == np.uint16:
# only support u32 to u16 by dropping upper 16-bit
assert A_1d.dtype == np.uint32, "only support u32 to u16"
A_hwl = np.zeros((height, width, pe_length), dtype)
idx = 0
for l in range(pe_length):
for w in range(width):
for h in range(height):
x = A_1d[idx]
x = x & 0x0000FFFF # drop upper 16-bit
A_hwl[(h, w, l)] = np.uint16(x)
idx = idx + 1
else:
raise RuntimeError(f"{dtype} is not supported")
return A_hwl
# y = Laplacian(x) for z=0,1,..,zDim-1
#
# The capacity of x and y can be bigger than zDim, but the physical domain is [0,zDim)
#
# The coordinates of physical domain are x,y,z.
# The physical layout of WSE is width, height.
# To avoid confusion, the kernel is written based on the layout of
# WSE, not physical domain of the application.
# For example, the user can match x-coordinate to x direction of
# WSE and y-coordinate to y-direction of WSE.
# x-coord
# +--------+
# y-coord | |
# +--------+
#
# The stencil coefficients "stencil_coeff" can vary along x-y direction,
# but universal along z-direction. Each PE can have seven coefficents,
# west, east, south, north, bottom, top and center.
#
# Input:
# stencil_coeff: size is (h,w,7)
# x: size is (h,w,l)
# Output:
# y: size is (h,w,l)
#
def laplacian(stencil_coeff, zDim, x, y):
(height, width, pe_length) = x.shape
assert zDim <= pe_length
# y and x must have the same dimensions
(m, n, k) = y.shape
assert m == height
assert n == width
assert pe_length == k
# stencil_coeff must be (h,w,7)
(m, n, k) = stencil_coeff.shape
assert m == height
assert n == width
assert 7 == k
# North
# j
# +------+
# West i | | East
# +------+
# south
for i in range(height):
for j in range(width):
for k in range(zDim):
c_west = stencil_coeff[(i,j,0)]
c_east = stencil_coeff[(i,j,1)]
c_south = stencil_coeff[(i,j,2)]
c_north = stencil_coeff[(i,j,3)]
c_bottom = stencil_coeff[(i,j,4)]
c_top = stencil_coeff[(i,j,5)]
c_center = stencil_coeff[(i,j,6)]
west_buf = 0 # x[(i,-1,k)]
if 0 < j:
west_buf = x[(i,j-1,k)]
east_buf = 0 # x[(i,w,k)]
if j < width-1:
east_buf = x[(i,j+1,k)]
north_buf = 0; # x[(-1,j,k)]
if 0 < i:
north_buf = x[(i-1,j,k)]
south_buf = 0 # x[(h,j,k)]
if i < height-1:
south_buf = x[(i+1,j,k)]
bottom_buf = 0 # x[(i,j,-1)]
if 0 < k:
bottom_buf = x[(i,j,k-1)]
top_buf = 0 # x[(i,j,l)]
if k < zDim-1:
top_buf = x[(i,j,k+1)]
center_buf = x[(i,j,k)]
y[(i,j,k)] = c_west*west_buf + c_east*east_buf + \
c_south*south_buf + c_north*north_buf + \
c_bottom*bottom_buf + c_top*top_buf + \
c_center*center_buf
# Given a 7-point stencil, generate sparse matrix A.
# A is represented by CSR.
# The order of grids is column-major
def csr_7_pt_stencil(stencil_coeff, height, width, pe_length):
# stencil_coeff must be (h,w,7)
(m, n, k) = stencil_coeff.shape
assert m == height
assert n == width
assert 7 == k
N = height * width * pe_length
# each point has 7 coefficents at most
cooRows = np.zeros(7*N, np.int32)
cooCols = np.zeros(7*N, np.int32)
cooVals = np.zeros(7*N, np.float32)
# North
# j
# +------+
# West i | | East
# +------+
# south
nnz = 0
for i in range(height):
for j in range(width):
for k in range(pe_length):
c_west = stencil_coeff[(i,j,0)]
c_east = stencil_coeff[(i,j,1)]
c_south = stencil_coeff[(i,j,2)]
c_north = stencil_coeff[(i,j,3)]
c_bottom = stencil_coeff[(i,j,4)]
c_top = stencil_coeff[(i,j,5)]
c_center = stencil_coeff[(i,j,6)]
center_idx = COL_MAJOR(i, j, k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = center_idx
cooVals[nnz] = c_center
nnz += 1
#west_buf = 0 # x[(i,-1,k)]
if 0 < j:
west_idx = COL_MAJOR(i, j-1, k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = west_idx
cooVals[nnz] = c_west;
nnz += 1
#east_buf = 0 # x[(i,w,k)]
if j < width-1:
east_idx = COL_MAJOR(i,j+1,k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = east_idx
cooVals[nnz] = c_east
nnz += 1
#north_buf = 0; # x[(-1,j,k)]
if 0 < i:
north_idx = COL_MAJOR(i-1,j,k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = north_idx
cooVals[nnz] = c_north
nnz += 1
#south_buf = 0 # x[(h,j,k)]
if i < height-1:
south_idx = COL_MAJOR(i+1,j,k, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = south_idx
cooVals[nnz] = c_south
nnz += 1
#bottom_buf = 0 # x[(i,j,-1)]
if 0 < k:
bottom_idx = COL_MAJOR(i,j,k-1, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = bottom_idx
cooVals[nnz] = c_bottom
nnz += 1
#top_buf = 0 # x[(i,j,l)]
if k < pe_length-1:
top_idx = COL_MAJOR(i,j,k+1, height, width, pe_length)
cooRows[nnz] = center_idx
cooCols[nnz] = top_idx
cooVals[nnz] = c_top
nnz += 1
A_coo = coo_matrix((cooVals, (cooRows, cooCols)), shape=(N, N))
A_csr = A_coo.tocsr(copy=True)
# sort column indices
A_csr = A_csr.sorted_indices().astype(np.float32)
assert 1 == A_csr.has_sorted_indices, "Error: A is not sorted"
return A_csr
bicgstab.py¶
import numpy as np
from numpy import linalg as LA
# solve a linear system A * x = b
# where A is a unsymmetric matrix
#
# The algorithm is modified from
# H. A. VAN DER VORST, BI-CGSTAB: A FAST AND SMOOTHLY CONVERGING VARIANT
# OF BI-CG FOR THE SOLUTION OF NONSYMMETRIC LINEAR SYSTEMS,
# SIAM J. ScI. STAT. COMPUT. Vol. 13, No. 2, pp. 631-644, March 1992
#
# Input
# A_csr sparse matrix of type scipy.sparse.csr_matrix
# x0 initial guess, could be a random vector or the approximated solution
# of some other iterative solver
# b right-hand-side vector
# max_ite maximum number of iterations
# tol tolerance to stop the algorithm
# the bigger, the more iterations
# usually tol = eps * |b| where eps > 1.e-6 for f32
# Output
# x approximated solution of A*x=b
# xi |b - A*x|^2
# k the number of iterations
#
# BiCGSTAB does not converge, it hits serious breakdown when
# rho = (r0, rj) is close to zero.
# Such behavior is confirmed by scipy.sparse.linalg.bicgstab
def bicgstab(A_csr, x0, b, max_ite, tol):
# storage
# b: right-hand-side, read-nly
# r0: read-only
# x: initial value x0
# r: r = b-A*x
# p
# v
# s: can align with r
# t
# To save more space, the input b can be a temporary buffer r
# Exit: x0 contains the final result, b contains the residual
k = 0
# x = x0
x = np.copy(x0)
# r0 = b - A*x0
y = A_csr.dot(x)
r0 = b - y
# r = r0
r = np.copy(r0)
# p = r0
p = np.copy(r)
# xi = |r0|^2
xi = np.dot(r,r)
# rho = (r0, r0)
rho = xi
print(f"[bicgstab] iter {k}: xi = {xi}")
# if |r_k|_2 < tol, then exit
while ( (xi > tol*tol) and (k < max_ite) ):
k = k + 1
# v = A*p
v = A_csr.dot(p)
# alpha = rho / (r0, v)
r0_dot_v = np.dot(r0,v)
alpha = rho / r0_dot_v
# s = r - alpha*v
s = r - alpha*v
# t = A*s
t = A_csr.dot(s)
# w = (t,s)/(t,t)
t_dot_s = np.dot(t,s)
t_dot_t = np.dot(t,t)
w = t_dot_s/t_dot_t
# x = x + alpha*p + w*s
x = x + alpha*p + w*s
# r = s - w*t
r = s - w*t
# update rho
rho_old = rho
# rho = (r0, r)
rho = np.dot(r0,r)
# beta = (rho/rho_old)*(alpha/w)
beta = (rho/rho_old)*(alpha/w)
# p = r + beta*(p - w*v)
p = r + beta*(p - w*v)
# update the residual
xi = np.dot(r,r)
# serious breakdown when rho = (rj, r0) is close to zero
# if such scenario happens, we need to restart
print(f"[bicgstab] iter {k}: xi = {xi}, rho = {rho}")
if abs(rho) < 1.e-4:
print(f"WARNING: breakdown due to tiny rho ({rho}), restart")
break
return x, xi, k
commands.sh¶
#!/usr/bin/env bash
set -e
cslc ./src/layout.csl --arch wse3 --fabric-dims=12,7 --fabric-offsets=4,1 \
--params=width:5,height:5,MAX_ZDIM:5 --params=BLOCK_SIZE:2 --params=C0_ID:0 \
--params=C1_ID:1 --params=C2_ID:2 --params=C3_ID:3 --params=C4_ID:4 --params=C5_ID:5 \
--params=C6_ID:6 --params=C7_ID:7 --params=C8_ID:8 -o=out \
--memcpy --channels=1 --width-west-buf=0 --width-east-buf=0
cs_python ./run.py -m=5 -n=5 -k=5 --latestlink out --channels=1 \
--width-west-buf=0 --width-east-buf=0 --zDim=5 --run-only --max-ite=2
layout_bicgstab.csl¶
// color map: memcpy + allreduce + stencil
//
// color var color var color var color var
// 0 C0 9 18 EN_REDUCE_2 27 reserved (memcpy)
// 1 C1 10 19 EN_REDUCE_3 28 reserved (memcpy)
// 2 C2 11 20 EN_REDUCE_4 29 reserved (memcpy)
// 3 C3 12 STATE 21 reserved (memcpy) 30 reserved (memcpy)
// 4 C4 13 22 reserved (memcpy) 31 reserved
// 5 C5 14 EN_STENCIL_1 23 reserved (memcpy) 32
// 6 C6 15 EN_STENCIL_2 24 33
// 7 C7 16 EN_STENCIL_3 25 34
// 8 C8 17 EN_REDUCE_1 26 35
//
// c0,c1,c2,c3,c4,c5,c6,c7 are internal colors of 7-point stencil
param C0_ID: i16;
param C1_ID: i16;
param C2_ID: i16;
param C3_ID: i16;
param C4_ID: i16;
param C5_ID: i16;
param C6_ID: i16;
param C7_ID: i16;
// c8 is an internal color of allreduce
param C8_ID: i16;
param MAX_ZDIM: i16; // maximum size of local vector x and y
param width: i16 ; // width of the core
param height: i16 ; // height of the core
param BLOCK_SIZE: i16; // size of temporary buffers for communication
const C0: color = @get_color(C0_ID);
const C1: color = @get_color(C1_ID);
const C2: color = @get_color(C2_ID);
const C3: color = @get_color(C3_ID);
const C4: color = @get_color(C4_ID);
const C5: color = @get_color(C5_ID);
const C6: color = @get_color(C6_ID);
const C7: color = @get_color(C7_ID);
const C8: color = @get_color(C8_ID);
// entrypoint of state machine in BiCGSTAB
const STATE: local_task_id = @get_local_task_id(12);
// entrypoints of 7-point stenil
const EN_STENCIL_1: local_task_id = @get_local_task_id(14);
const EN_STENCIL_2: local_task_id = @get_local_task_id(15);
const EN_STENCIL_3: local_task_id = @get_local_task_id(16);
// entrypoints of allreduce
const EN_REDUCE_1: local_task_id = @get_local_task_id(17);
const EN_REDUCE_2: local_task_id = @get_local_task_id(18);
const EN_REDUCE_3: local_task_id = @get_local_task_id(19);
const EN_REDUCE_4: local_task_id = @get_local_task_id(20);
const stencil = @import_module( "../../csl-libs/stencil_3d_7pts/layout.csl", .{
.colors = [8]color{C0, C1, C2, C3, C4, C5, C6, C7},
.entrypoints = [3]local_task_id{EN_STENCIL_1, EN_STENCIL_2, EN_STENCIL_3},
.width = width,
.height = height
});
const reduce = @import_module( "../../csl-libs/allreduce/layout.csl", .{
.colors = [1]color{C8},
.entrypoints = [4]local_task_id{EN_REDUCE_1, EN_REDUCE_2, EN_REDUCE_3, EN_REDUCE_4},
.width = width,
.height = height
});
const memcpy = @import_module( "<memcpy/get_params>", .{
.width = width,
.height = height,
});
layout{
@comptime_assert(C0_ID < C1_ID);
@comptime_assert(C1_ID < C2_ID);
@comptime_assert(C2_ID < C3_ID);
@comptime_assert(C3_ID < C4_ID);
@comptime_assert(C4_ID < C5_ID);
@comptime_assert(C5_ID < C6_ID);
@comptime_assert(C6_ID < C7_ID);
@comptime_assert(C7_ID < C8_ID);
// step 1: configure the rectangle which does not include halo
@set_rectangle( width, height );
// step 2: compile csl code for a set of PEx.y and generate out_x_y.elf
// format: @set_tile_code(x, y, code.csl, param_binding);
var py: i16 = 0;
while(py < height) : (py +=1) {
var px: i16 = 0;
while(px < width) : (px +=1) {
const memcpyParams = memcpy.get_params(px);
const stencilParams = stencil.get_params(px, py);
const reduceParams = reduce.get_params(px, py);
var params: comptime_struct = .{
.memcpyParams = memcpyParams,
.reduceParams = reduceParams,
.MAX_ZDIM = MAX_ZDIM,
.BLOCK_SIZE = BLOCK_SIZE,
.STATE = STATE,
.stencilParams = stencilParams
};
@set_tile_code(px, py, "kernel_bicgstab.csl", params);
}
}
@export_name("b", [*]f32, true);
@export_name("x", [*]f32, true);
@export_name("stencil_coeff", [*]f32, true);
@export_name("time_buf_u16", [*]u16, true);
@export_name("time_ref", [*]u16, true);
@export_name("rho", [*]f32, true);
@export_name("xi", [*]f32, true);
@export_name("f_enable_timer", fn()void);
@export_name("f_tic", fn()void);
@export_name("f_toc", fn()void);
@export_name("f_memcpy_timestamps", fn()void);
@export_name("f_bicgstab", fn(i16,f32,i16)void);
@export_name("f_sync", fn()void);
@export_name("f_reference_timestamps", fn()void);
} // end of layout
kernel_bicgstab.csl¶
param memcpyParams: comptime_struct;
param reduceParams: comptime_struct;
param stencilParams: comptime_struct;
param MAX_ZDIM: i16; // size of vector x
param BLOCK_SIZE: i16; // size of temporary buffers for communication
param STATE: local_task_id;
const timestamp = @import_module("<time>");
const math_lib = @import_module("<math>");
const blas_lib = @import_module("blas.csl");
// memcpy module reserves
// - input/output queue 0 and 1
const sys_mod = @import_module( "<memcpy/memcpy>", memcpyParams);
// allreduce uses input queue/output queue 1
const reduce_mod = @import_module( "../../csl-libs/allreduce/pe.csl", @concat_structs(reduceParams, .{
.f_callback = f_trigger_state_machine,
.queues = [1]u16{2},
.dest_dsr_ids = [1]u16{1},
.src0_dsr_ids = [1]u16{1},
.src1_dsr_ids = [1]u16{1}
}));
// output queue cannot overlap input queues
const stencil_mod = @import_module( "../../csl-libs/stencil_3d_7pts/pe.csl", @concat_structs(stencilParams, .{
.f_callback = f_trigger_state_machine,
.input_queues = [4]u16{4, 5, 6, 7},
.output_queues = if (@is_arch("wse3")) [4]u16{4, 5, 6, 7} else [1]u16{3},
.output_ut_id = 3,
.BLOCK_SIZE = BLOCK_SIZE,
.dest_dsr_ids = [2]u16{2,3},
.src0_dsr_ids = [1]u16{2},
.src1_dsr_ids = [2]u16{2,3}
}));
// tsc_size_words = 3
// starting time of H2D/D2H
var tscStartBuffer = @zeros([timestamp.tsc_size_words]u16);
// ending time of H2D/D2H
var tscEndBuffer = @zeros([timestamp.tsc_size_words]u16);
var b = @zeros([MAX_ZDIM]f32); // right-hand-side
var x = @zeros([MAX_ZDIM]f32); // approximated solution
var r0 = @zeros([MAX_ZDIM]f32); // initial residual
var r = @zeros([MAX_ZDIM]f32); // residual
var p = @zeros([MAX_ZDIM]f32); // Krylov space
var v = @zeros([MAX_ZDIM]f32); // Krylov space
var s = @zeros([MAX_ZDIM]f32); // can align with r
var t = @zeros([MAX_ZDIM]f32); // t = A * s
var dot = @zeros([1]f32); // dummy variable for f_sync
var xi = @zeros([1]f32);
var rho = @zeros([1]f32);
var rho_old = @zeros([1]f32);
var r0_dot_v = @zeros([1]f32);
var t_dot_s = @zeros([1]f32);
var t_dot_t = @zeros([1]f32);
var w: f32 = @as(f32,0); // w = (t,s)/(t,t)
var alpha: f32 = @as(f32,0); // alpha = rho/(r0, v)
var beta: f32 = @as(f32,0); // beta = (rho/rho_old)*(alpha/w)
// stencil coefficients are organized as
// {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
//
// The formula is
// c_west * x[i-1][j][k] + c_east * x[i+1][j][k] +
// c_south * x[i][j-1][k] + c_north * x[i][j+1][k] +
// c_bottom * x[i][j][k-1] + c_top * x[i][j][k+1] +
// c_center * x[i][j][k]
var stencil_coeff = @zeros([7]f32);
// time_buf_u16[0:5] = {tscStartBuffer, tscEndBuffer}
var time_buf_u16 = @zeros([timestamp.tsc_size_words*2]u16);
// reference clock inside allreduce module
var time_ref_u16 = @zeros([timestamp.tsc_size_words]u16);
var ptr_b: [*]f32 = &b;
var ptr_x: [*]f32 = &x;
var ptr_stencil_coeff: [*]f32 = &stencil_coeff;
var ptr_time_buf_u16: [*]u16 = &time_buf_u16;
var ptr_time_ref: [*]u16 = &time_ref_u16;
var ptr_rho: [*]f32 = ρ
var ptr_xi: [*]f32 = ξ
// size of local tensor during the BiCGSTAB
var n: i16 = 0;
var tol: f32 = @as(f32, 0);
var max_ite: i16 = 0;
var mem_b_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> b[i] });
var mem_x_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> x[i] });
var mem_r0_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r0[i] });
var mem_r_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> r[i] });
var mem_p_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> p[i] });
var mem_v_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> v[i] });
var mem_s_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> s[i] });
var mem_t_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{1} -> t[i] });
const STATE_SYNC: i16 = 0;
const STATE_INIT: i16 = 1;
const STATE_SPMV_AX: i16 = 2;
const STATE_RESIDUAL: i16 = 3;
const STATE_INIT_RHO: i16 = 4;
const STATE_CONV_CHECK: i16 = 5;
const STATE_SPMV_AP: i16 = 6;
const STATE_R0_DOT_V: i16 = 7;
const STATE_UPDATE_ALPHA_S_T: i16 = 8;
const STATE_T_DOT_S: i16 = 9;
const STATE_T_DOT_T: i16 = 10;
const STATE_UPDATE_W_X_R_RHO: i16 = 11;
const STATE_UPDATE_BETA_P_XI: i16 = 12;
const STATE_EXIT: i16 = 13;
var k: i16 = 0;
var cur_state: i16 = 0;
var next_state: i16 = 0;
fn f_enable_timer() void {
timestamp.enable_tsc();
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_tic() void {
timestamp.get_timestamp(&tscStartBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_toc() void {
timestamp.get_timestamp(&tscEndBuffer);
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_memcpy_timestamps() void {
time_buf_u16[0] = tscStartBuffer[0];
time_buf_u16[1] = tscStartBuffer[1];
time_buf_u16[2] = tscStartBuffer[2];
time_buf_u16[3] = tscEndBuffer[0];
time_buf_u16[4] = tscEndBuffer[1];
time_buf_u16[5] = tscEndBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
fn f_sync() void {
cur_state = STATE_SYNC;
@activate(STATE);
}
fn f_bicgstab(size:i16, tol_val:f32, max_ite_val: i16) void {
n = size;
tol = tol_val;
max_ite = max_ite_val;
cur_state = STATE_INIT;
@activate(STATE);
}
// initialization of BiCGSTAB
// - setup the length of all DSDs
//
fn f_bicgstab_init() void {
// set the length of all DSDs
mem_b_dsd = @set_dsd_length(mem_b_dsd, @bitcast(u16,n));
mem_x_dsd = @set_dsd_length(mem_x_dsd, @bitcast(u16,n));
mem_r0_dsd = @set_dsd_length(mem_r0_dsd, @bitcast(u16,n));
mem_r_dsd = @set_dsd_length(mem_r_dsd, @bitcast(u16,n));
mem_p_dsd = @set_dsd_length(mem_p_dsd, @bitcast(u16,n));
mem_v_dsd = @set_dsd_length(mem_v_dsd, @bitcast(u16,n));
mem_s_dsd = @set_dsd_length(mem_s_dsd, @bitcast(u16,n));
mem_t_dsd = @set_dsd_length(mem_t_dsd, @bitcast(u16,n));
// must go back to state machine
f_trigger_state_machine();
}
// v = A*x = A*x0
fn f_spmv_Ax() void {
stencil_mod.spmv(n, &stencil_coeff, &x, &v);
}
// - r0 = b - v = b - A*x0
// where v = A*x is computed by f_spmv_Ax
// - r = r0
// - p = r0
// - xi = |r0|^2
fn f_residual() void {
// r0 = b - v
@fsubs(mem_r0_dsd, mem_b_dsd, mem_v_dsd);
// r = r0
@fmovs(mem_r_dsd, mem_r0_dsd);
// p = r0
@fmovs(mem_p_dsd, mem_r0_dsd);
// xi = |r0|^2
xi[0] = blas_lib.dot(n, &r, &r);
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
// rho = xi
fn f_init_rho() void {
rho[0] = xi[0];
// must go back to state machine
f_trigger_state_machine();
}
// v = A*p
fn f_spmv_Ap() void {
stencil_mod.spmv(n, &stencil_coeff, &p, &v);
}
// r0_dot_v = np.dot(r0,v)
fn f_r0_dot_v() void {
// r0_dot_v = dot(r0, v)
r0_dot_v[0] = blas_lib.dot(n, &r0, &v);
reduce_mod.allreduce(1, &r0_dot_v, reduce_mod.TYPE_BINARY_OP.ADD);
}
// alpha = rho / (r0, v)
// s = r - alpha*v
// t = A*s
fn f_update_alpha_s_t() void {
alpha = rho[0] / r0_dot_v[0];
var alpha_minus: f32 = -alpha;
// s = r - alpha*v
@fmacs(mem_s_dsd, mem_r_dsd, mem_v_dsd, alpha_minus);
// t = A*s
stencil_mod.spmv(n, &stencil_coeff, &s, &t);
}
// t_dot_s = np.dot(t,s)
fn f_t_dot_s() void {
t_dot_s[0] = blas_lib.dot(n, &t, &s);
reduce_mod.allreduce(1, &t_dot_s, reduce_mod.TYPE_BINARY_OP.ADD);
}
// t_dot_t = np.dot(t,t)
fn f_t_dot_t() void {
t_dot_t[0] = blas_lib.dot(n, &t, &t);
reduce_mod.allreduce(1, &t_dot_t, reduce_mod.TYPE_BINARY_OP.ADD);
}
// w = (t,s)/(t,t)
// x = x + alpha*p + w*s
// r = s - w*t
// rho_old = rho
// rho = (r0, r)
//
fn f_update_w_x_r_rho() void {
w = t_dot_s[0]/t_dot_t[0];
// update x = x + alpha*p + w*s
// i) x = x + alpha*p
@fmacs(mem_x_dsd, mem_x_dsd, mem_p_dsd, alpha);
// ii) x = x + w*s
@fmacs(mem_x_dsd, mem_x_dsd, mem_s_dsd, w);
// r = s - w * t
var w_minus: f32 = -w;
@fmacs(mem_r_dsd, mem_s_dsd, mem_t_dsd, w_minus);
// update rho
rho_old[0] = rho[0];
// rho = np.dot(r0,r)
rho[0] = blas_lib.dot(n, &r0, &r);
reduce_mod.allreduce(1, &rho, reduce_mod.TYPE_BINARY_OP.ADD);
}
// beta = (rho/rho_old)*(alpha/w)
// p = r + beta*(p - w*v)
// xi = np.dot(r,r)
fn f_update_beta_p_xi() void {
beta = (rho[0]/rho_old[0])*(alpha/w);
// compute p = r + beta*(p - w*v)
// i) p = p - w*v
var w_minus: f32 = -w;
@fmacs(mem_p_dsd, mem_p_dsd, mem_v_dsd, w_minus);
// ii) p = r + beta*p
@fmacs(mem_p_dsd, mem_r_dsd, mem_p_dsd, beta);
// xi = np.dot(r,r)
xi[0] = blas_lib.dot(n, &r, &r);
reduce_mod.allreduce(1, &xi, reduce_mod.TYPE_BINARY_OP.ADD);
}
fn f_trigger_state_machine() void {
cur_state = next_state; // go to next state
@activate(STATE);
}
// state machine of BiCGSTAB module
// it contains two operations
// - sync operation of allreduce
// - BiCGSTAB algorithm
//
// The callback f_trigger_state_machine is provided for the
// allreduce module and stencil module.
//
// The state transition of sync is
// SYNC --> EXIT
//
// The state transition of BiCGSTAB algorithm is
// INIT --> SPMV_AX --> RESIDUAL --> INIT_RHO --> CONV_CHECK --> EXIT OR SPMV_AP
// --> R0_DOT_V --> UPDATE_ALPHA_S_T --> T_DOT_S --> T_DOT_T
// --> UPDATE_W_X_R_RHO --> UPDATE_BETA_P_XI --> CONV_CHECK
//
task f_state() void {
if (STATE_SYNC == cur_state){
// sync all PEs by internal allreduce module
next_state = STATE_EXIT;
reduce_mod.allreduce(1, &dot, reduce_mod.TYPE_BINARY_OP.ADD);
}else if (STATE_INIT == cur_state){
next_state = STATE_SPMV_AX;
f_bicgstab_init();
}else if (STATE_SPMV_AX == cur_state){
next_state = STATE_RESIDUAL;
k = 0;
// v = A*x0
f_spmv_Ax();
}else if (STATE_RESIDUAL == cur_state){
next_state = STATE_INIT_RHO;
// r0 = b - v = b - A*x0
// r = r0
// p = r0
// xi = |r0|^2
f_residual();
}else if (STATE_INIT_RHO == cur_state){
next_state = STATE_CONV_CHECK;
// rho = xi = (r0, r0)
f_init_rho();
}else if (STATE_CONV_CHECK == cur_state){
// if |r|_2 < tol, then exit
if ((xi[0] > tol*tol) and (k < max_ite)){
next_state = STATE_SPMV_AP;
}else{
next_state = STATE_EXIT;
}
f_trigger_state_machine();
}else if (STATE_SPMV_AP == cur_state){
next_state = STATE_R0_DOT_V;
k = k + 1;
// v = A*p
f_spmv_Ap();
}else if (STATE_R0_DOT_V == cur_state){
next_state = STATE_UPDATE_ALPHA_S_T;
// r0_dot_v = dot(r0, v)
f_r0_dot_v();
}else if (STATE_UPDATE_ALPHA_S_T == cur_state){
next_state = STATE_T_DOT_S;
// alpha = rho / (r0, v)
// s = r - alpha*v
// t = A*s
f_update_alpha_s_t();
}else if (STATE_T_DOT_S == cur_state){
next_state = STATE_T_DOT_T;
// t_dot_s = np.dot(t,s)
f_t_dot_s();
}else if (STATE_T_DOT_T == cur_state){
next_state = STATE_UPDATE_W_X_R_RHO;
// t_dot_t = np.dot(t,t)
f_t_dot_t();
}else if (STATE_UPDATE_W_X_R_RHO == cur_state){
next_state = STATE_UPDATE_BETA_P_XI;
// w = (t,s)/(t,t)
// x = x + alpha*p + w*s
// r = s - w*t
// rho_old = rho
// rho = (r0, r)
f_update_w_x_r_rho();
}else if (STATE_UPDATE_BETA_P_XI == cur_state){
next_state = STATE_CONV_CHECK;
// beta = (rho/rho_old)*(alpha/w)
// p = r + beta*(p - w*v)
// xi = np.dot(r,r)
f_update_beta_p_xi();
}else if (STATE_EXIT == cur_state){
sys_mod.unblock_cmd_stream();
}else{
@assert(false); // Error: unknown state
// assert() is ignored by HW, it could hang here
// To avoid a stall, trigger callback (the caveat is the wrong result)
sys_mod.unblock_cmd_stream();
}
}
fn f_reference_timestamps() void {
time_ref_u16[0] = reduce_mod.tscRefBuffer[0];
time_ref_u16[1] = reduce_mod.tscRefBuffer[1];
time_ref_u16[2] = reduce_mod.tscRefBuffer[2];
// the user must unblock cmd color for every PE
sys_mod.unblock_cmd_stream();
}
comptime {
@bind_local_task( f_state, STATE);
}
comptime {
@export_symbol(ptr_b, "b");
@export_symbol(ptr_x, "x");
@export_symbol(ptr_stencil_coeff, "stencil_coeff");
@export_symbol(ptr_time_buf_u16, "time_buf_u16");
@export_symbol(ptr_time_ref, "time_ref");
@export_symbol(ptr_rho, "rho");
@export_symbol(ptr_xi, "xi");
}
comptime{
@export_symbol(f_enable_timer);
@export_symbol(f_tic);
@export_symbol(f_toc);
@export_symbol(f_memcpy_timestamps);
@export_symbol(f_bicgstab);
@export_symbol(f_sync);
@export_symbol(f_reference_timestamps);
}
run_bicgstab.py¶
#!/usr/bin/env cs_python
# pylint: disable=too-many-function-args
""" test BiCGSTAB of a sparse matrix A built by 7-point stencil
The following BiCGSTAB algorithm is modified from [1].
---
The algorithm of unpreconditioned BiCGSTAB is
Given b, x0 and tol = eps*|b|
k = 0
x = x0
r0 = b - A*x
r = r0
p = r0
xi = |r|^2 = (r0, r0)
rho = xi
while xi > tol*tol and k < max_ite
k = k + 1
v = A*p
alpha = rho/(r0, v)
s = r - alpha*v
t = A*s
w = (t,s)/(t,t)
x = x + alpha*p + w*s
r = s - w*t
rho_old = rho
rho = (r0, r)
beta = (rho/rho_old)*(alpha/w)
p = r + beta*(p - w*v)
xi = |r|^2
end
x approximates the solution of a linear system Ax = b
The sparse matrix A is built by a 7-point stenil.
The 7-point stencil is defined by the following:
---
The Laplacian operator L on 3-dimensional domain can be represented by 7-point
stencil based on the standard 2nd order Finite Difference Method. The operator form
with Dirichlet boundary conditions can be written by
L[u](i,j,k) = u(i+1, j, k ) + u(i-1, j, k ) +
u(i, j+1,k ) + u(i, j-1, k ) +
u(i, j, k+1) + u(i, j, k-1) +
-6*u(i, j, k)
In general the coefficients of those 7 points can vary. To minimize the memory
consumption, this example assumes the coefficients are independent of index k and
whole vector u(i,j,:) is placed in one PE (px=j, py=i).
The above formula can be re-written by
c_west * x[i-1][j ][k ] + c_east * x[i+1][j ][k ] +
c_south * x[i ][j-1][k ] + c_north * x[i ][j+1][k ] +
c_bot * x[i ][j ][k-1] + c_top * x[i ][j ][k+1] +
c_center * x[i][j][k]
Each PE only holds 7 coefficients organized by c_west, c_east, c_south, c_north,
c_bot, c_top and c_center.
This example provides two modules, one is allreduce and the other is stencil_3d_7pts.
"allreduce" module can synchronize all PEs to form a reference clock.
"allreduce" module also computes dot(x,y) over a core rectangle.
"stencil_3d_7pts" module can compute y = A*x where A is the matrix from 7-point stencil.
The framework is
---
sync() // synchronize all PEs to sample the reference clock
tic() // record start time
BiCGSTAB(n, tol. max_ite) // BiCGSTAB on WSE
toc() // record end time
---
The run_bicgstab.py performs CG on the WSE, not calls a sequence of spmv and dot.
It is faster than run.py because the nrm(r) is not transferred back to the host.
WSE can check the convergence without the host.
The tic() samples "time_start" and toc() samples "time_end". The sync() samples
"time_ref" which is used to shift "time_start" and "time_end".
The elapsed time is measured by
cycles_send = max(time_end) - min(time_start)
The overall runtime is computed via the following formula
time_send = (cycles_send / 0.85) *1.e-3 us
where a PE runs with clock speed 850MHz
Here is the list of parameters:
-m=<int> is the height of the core
-n=<int> is the width of the core
-k=<int> is size of x and y allocated in the core
--zDim=<int> is the number of f32 per PE, computed by y = A*x
zDim must be not greater than k
--max-ite=<int> number of iterations
--channels=<int> specifies the number of I/O channels, no bigger than 16
WARNING: BiCGSTAB may not converge if rho=(rj, r0) is close to zero.
If it does happen, we need to restart the BiCGSTAB.
The algorithm here does not provide the restart.
Reference:
[1] H. A. VAN DER VORST, BI-CGSTAB: A FAST AND SMOOTHLY CONVERGING VARIANT
OF BI-CG FOR THE SOLUTION OF NONSYMMETRIC LINEAR SYSTEMS,
SIAM J. ScI. STAT. COMPUT. Vol. 13, No. 2, pp. 631-644, March 1992
"""
import os
from typing import Optional
from pathlib import Path
import shutil
import subprocess
import random
import math
import numpy as np
from scipy.sparse import linalg as sparse_LA
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType, MemcpyOrder # pylint: disable=no-name-in-module
from cmd_parser import parse_args
from util import (
hwl_2_oned_colmajor,
oned_to_hwl_colmajor,
laplacian,
csr_7_pt_stencil,
)
from bicgstab import bicgstab
def make_u48(words):
return words[0] + (words[1] << 16) + (words[2] << 32)
def csl_compile_core(
cslc: str,
width: int, # width of the core
height: int, # height of the core
pe_length: int,
blockSize: int,
file_config: str,
elf_dir: str,
fabric_width: int,
fabric_height: int,
core_fabric_offset_x: int, # fabric-offsets of the core
core_fabric_offset_y: int,
use_precompile: bool,
arch: Optional[str],
C0: int,
C1: int,
C2: int,
C3: int,
C4: int,
C5: int,
C6: int,
C7: int,
C8: int,
channels: int,
width_west_buf: int,
width_east_buf: int
):
if not use_precompile:
args = []
args.append(cslc) # command
args.append(file_config)
args.append(f"--fabric-dims={fabric_width},{fabric_height}")
args.append(f"--fabric-offsets={core_fabric_offset_x},{core_fabric_offset_y}")
args.append(f"--params=width:{width},height:{height},MAX_ZDIM:{pe_length}")
args.append(f"--params=BLOCK_SIZE:{blockSize}")
args.append(f"--params=C0_ID:{C0}")
args.append(f"--params=C1_ID:{C1}")
args.append(f"--params=C2_ID:{C2}")
args.append(f"--params=C3_ID:{C3}")
args.append(f"--params=C4_ID:{C4}")
args.append(f"--params=C5_ID:{C5}")
args.append(f"--params=C6_ID:{C6}")
args.append(f"--params=C7_ID:{C7}")
args.append(f"--params=C8_ID:{C8}")
args.append(f"-o={elf_dir}")
if arch is not None:
args.append(f"--arch={arch}")
args.append("--memcpy")
args.append(f"--channels={channels}")
args.append(f"--width-west-buf={width_west_buf}")
args.append(f"--width-east-buf={width_east_buf}")
print(f"subprocess.check_call(args = {args}")
subprocess.check_call(args)
else:
print("\tuse pre-compile ELFs")
def timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl):
# time_start = start time of spmv
time_start = np.zeros((height, width)).astype(int)
# time_end = end time of spmv
time_end = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_memcpy_hwl[(h, w, 0)]
word[1] = time_memcpy_hwl[(h, w, 1)]
word[2] = time_memcpy_hwl[(h, w, 2)]
time_start[(h,w)] = make_u48(word)
word[0] = time_memcpy_hwl[(h, w, 3)]
word[1] = time_memcpy_hwl[(h, w, 4)]
word[2] = time_memcpy_hwl[(h, w, 5)]
time_end[(h,w)] = make_u48(word)
# time_ref = reference clock
time_ref = np.zeros((height, width)).astype(int)
word = np.zeros(3).astype(np.uint16)
for w in range(width):
for h in range(height):
word[0] = time_ref_hwl[(h, w, 0)]
word[1] = time_ref_hwl[(h, w, 1)]
word[2] = time_ref_hwl[(h, w, 2)]
time_ref[(h, w)] = make_u48(word)
# adjust the reference clock by the propagation delay
# the right-bottom PE signals other PEs, the propagation delay is
# (h-1) - py + (w-1) - px
for py in range(height):
for px in range(width):
time_ref[(py, px)] = time_ref[(py, px)] - ((width+height-2)-(px + py))
# shift time_start and time_end by time_ref
time_start = time_start - time_ref
time_end = time_end - time_ref
# cycles_send = time_end[(h,w)] - time_start[(h,w)]
# 850MHz --> 1 cycle = (1/0.85) ns = (1/0.85)*1.e-3 us
# time_send = (cycles_send / 0.85) *1.e-3 us
#
min_time_start = time_start.min()
max_time_end = time_end.max()
cycles_send = max_time_end - min_time_start
time_send = (cycles_send / 0.85) *1.e-3
print(f"cycles_send = {cycles_send} cycles")
print(f"time_send = {time_send} us")
# How to compile
# python run_bicgstab.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
# --width-west-buf=0 --width-east-buf=0 --compile-only
# How to run
# python run_bicgstab.py -m=5 -n=5 -k=5 --latestlink latest --channels=1 \
# --width-west-buf=0 --width-east-buf=0 --run-only --zDim=5 --max-ite=1
def main():
"""Main method to run the example code."""
random.seed(127)
args, dirname = parse_args()
cslc = "cslc"
if args.driver is not None:
cslc = args.driver
print(f"cslc = {cslc}")
width_west_buf = args.width_west_buf
width_east_buf = args.width_east_buf
channels = args.channels
assert channels <= 16, "only support up to 16 I/O channels"
assert channels >= 1, "number of I/O channels must be at least 1"
print(f"width_west_buf = {width_west_buf}")
print(f"width_east_buf = {width_east_buf}")
print(f"channels = {channels}")
height = args.m
width = args.n
pe_length = args.k
zDim = args.zDim
blockSize = args.blockSize
max_ite = args.max_ite
print(f"width = {width}, height = {height}, pe_length={pe_length}, zDim={zDim}, blockSize={blockSize}")
print(f"max_ite = {max_ite}")
assert pe_length >= 2, "the maximum size of z must be greater than 1"
assert zDim <= pe_length, "[0, zDim) cannot exceed the storage"
np.random.seed(2)
if 1:
x = np.zeros((height,width,pe_length), dtype = np.float32)
else:
x = np.arange(height*width*zDim).reshape(height, width, zDim).astype(np.float32) + 100
x_1d = hwl_2_oned_colmajor(height, width, zDim, x, np.float32)
nrm2_x = np.linalg.norm(x_1d.ravel(), 2)
# |x0|_2 = 1
if nrm2_x > 0:
x_1d = x_1d / nrm2_x
x = x / nrm2_x
b = np.arange(height*width*pe_length).reshape(height, width, pe_length).astype(np.float32) + 1
b_1d = hwl_2_oned_colmajor(height, width, pe_length, b, np.float32)
# stencil coefficients has the following order
# {c_west, c_east, c_south, c_north, c_bottom, c_top, c_center}
# BiCGSTAB does not converge, it hits serious breakdown when
# rho = (r0, rj) is close to zero.
# Such behavior is confirmed by scipy.sparse.linalg.bicgstab
stencil_coeff = np.zeros((height, width, 7), dtype = np.float32)
for i in range(height):
for j in range(width):
stencil_coeff[(i, j, 0)] = -1 # west
stencil_coeff[(i, j, 1)] = -1 # east
stencil_coeff[(i, j, 2)] = -1 # south
stencil_coeff[(i, j, 3)] = -1 # north
stencil_coeff[(i, j, 4)] = -1 # bottom
stencil_coeff[(i, j, 5)] = -1 # top
stencil_coeff[(i, j, 6)] = 6 + j # center
# fabric-offsets = 1,1
fabric_offset_x = 1
fabric_offset_y = 1
# starting point of the core rectangle = (core_fabric_offset_x, core_fabric_offset_y)
# memcpy framework requires 3 columns at the west of the core rectangle
# memcpy framework requires 2 columns at the east of the core rectangle
core_fabric_offset_x = fabric_offset_x + 3 + width_west_buf
core_fabric_offset_y = fabric_offset_y
# (min_fabric_width, min_fabric_height) is the minimal dimension to run the app
min_fabric_width = (core_fabric_offset_x + width + 2 + 1 + width_east_buf)
min_fabric_height = (core_fabric_offset_y + height + 1)
fabric_width = 0
fabric_height = 0
if args.fabric_dims:
w_str, h_str = args.fabric_dims.split(",")
fabric_width = int(w_str)
fabric_height = int(h_str)
if fabric_width == 0 or fabric_height == 0:
fabric_width = min_fabric_width
fabric_height = min_fabric_height
assert fabric_width >= min_fabric_width
assert fabric_height >= min_fabric_height
# prepare the simulation
print('store ELFs and log files in the folder ', dirname)
# layout of a rectangle
code_csl = "layout_bicgstab.csl"
C0 = 0
C1 = 1
C2 = 2
C3 = 3
C4 = 4
C5 = 5
C6 = 6
C7 = 7
C8 = 8
csl_compile_core(
cslc,
width,
height,
pe_length,
blockSize,
code_csl,
dirname,
fabric_width,
fabric_height,
core_fabric_offset_x,
core_fabric_offset_y,
args.run_only,
args.arch,
C0,
C1,
C2,
C3,
C4,
C5,
C6,
C7,
C8,
channels,
width_west_buf,
width_east_buf
)
if args.compile_only:
print("COMPILE ONLY: EXIT")
return
A_csr = csr_7_pt_stencil(stencil_coeff, height, width, zDim)
[nrows, ncols] = A_csr.shape
nnz = A_csr.nnz
print(f"Load matrix A, {nrows}-by-{ncols} with {nnz} nonzeros")
if nrows < 1000:
A = A_csr.todense()
# s is singular value in descending order
u, s, vh = np.linalg.svd(A, full_matrices=False)
min_svd = min(s)
max_svd = max(s)
print(f"min(svd) = {min_svd}")
print(f"max(svd) = {max_svd}")
print(f"cond(A) = {max_svd/min_svd}")
nrm_b = np.linalg.norm(b_1d.ravel(), 2)
eps = 1.e-3
tol = eps * nrm_b
print(f"|b| = {nrm_b}")
print(f"max_ite = {max_ite}")
print(f"eps = {eps}")
print(f"tol = {tol}")
xf_1d, xi, k = bicgstab(A_csr, x_1d, b_1d, max_ite, tol)
print(f"[host] after BiCGSTAB, xi = {xi}, k = {k}")
memcpy_dtype = MemcpyDataType.MEMCPY_32BIT
simulator = SdkRuntime(dirname, cmaddr=args.cmaddr)
symbol_b = simulator.get_id("b")
symbol_x = simulator.get_id("x")
symbol_xi = simulator.get_id("xi")
symbol_stencil_coeff = simulator.get_id("stencil_coeff")
symbol_time_buf_u16 = simulator.get_id("time_buf_u16")
symbol_time_ref = simulator.get_id("time_ref")
simulator.load()
simulator.run()
print(f"copy vector b and x0")
simulator.memcpy_h2d(symbol_b, b_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
simulator.memcpy_h2d(symbol_x, x_1d, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print(f"copy 7 stencil coefficients")
stencil_coeff_1d = hwl_2_oned_colmajor(height, width, 7, stencil_coeff, np.float32)
simulator.memcpy_h2d(symbol_stencil_coeff, stencil_coeff_1d, 0, 0, width, height, 7,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=True)
print("step 0: enable timer")
simulator.launch("f_enable_timer", nonblock=False)
print("step 1: sync all PEs")
simulator.launch("f_sync", nonblock=False)
print("step 2: copy reference clock from reduce module")
simulator.launch("f_reference_timestamps", nonblock=False)
print("step 3: tic() records time_start")
simulator.launch("f_tic", nonblock=True)
print(f"step 4: BiCGSTAB with max_ite={max_ite}, zDim={zDim}, tol={tol}")
simulator.launch("f_bicgstab", np.int16(zDim), np.float32(tol), np.int16(max_ite), nonblock=False)
print("step 5: toc() records time_end")
simulator.launch("f_toc", nonblock=False)
xi_wse = np.zeros(1, np.float32)
simulator.memcpy_d2h(xi_wse, symbol_xi, 0, 0, 1, 1, 1,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
xi = xi_wse[0]
print(f"[BiCGSTAB] xi = |b-A*x|^2 = {xi}")
print("step 6: prepare (time_start, time_end)")
simulator.launch("f_memcpy_timestamps", nonblock=False)
print("step 7: D2H (time_start, time_end)")
time_memcpy_hwl_1d = np.zeros(height*width*6, np.uint32)
simulator.memcpy_d2h(time_memcpy_hwl_1d, symbol_time_buf_u16, 0, 0, width, height, 6,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_memcpy_hwl = oned_to_hwl_colmajor(height, width, 6, time_memcpy_hwl_1d, np.uint16)
print("step 8: D2H reference clock")
time_ref_1d = np.zeros(height*width*3, np.uint32)
simulator.memcpy_d2h(time_ref_1d, symbol_time_ref, 0, 0, width, height, 3,\
streaming=False, data_type=MemcpyDataType.MEMCPY_16BIT, order=MemcpyOrder.COL_MAJOR, nonblock=False)
time_ref_hwl = oned_to_hwl_colmajor(height, width, 3, time_ref_1d, np.uint16)
print("step 9: D2H x[zDim]")
xf_wse_1d = np.zeros(height*width*zDim, np.float32)
simulator.memcpy_d2h(xf_wse_1d, symbol_x, 0, 0, width, height, zDim,\
streaming=False, data_type=memcpy_dtype, order=MemcpyOrder.COL_MAJOR, nonblock=False)
simulator.stop()
if args.cmaddr is None:
# move simulation log and core dump to the given folder
dst_log = Path(f"{dirname}/sim.log")
src_log = Path("sim.log")
if src_log.exists():
shutil.move(src_log, dst_log)
dst_trace = Path(f"{dirname}/simfab_traces")
src_trace = Path("simfab_traces")
if dst_trace.exists():
shutil.rmtree(dst_trace)
if src_trace.exists():
shutil.move(src_trace, dst_trace)
timing_analysis(height, width, zDim, time_memcpy_hwl, time_ref_hwl)
nrm2_xf = np.linalg.norm(xf_wse_1d.ravel(), 2)
print(f"|xf|_2 = {nrm2_xf}")
print(f"|b - A*xf|_2 = {math.sqrt(xi)}")
print(f"number of iterations = {k}")
z = xf_1d.ravel() - xf_wse_1d.ravel()
nrm_z = np.linalg.norm(z, np.inf)
print(f"|xf_ref - xf_wse| = {nrm_z}")
np.testing.assert_allclose(xf_1d.ravel(), xf_wse_1d.ravel(), 1.e-5)
print("\nSUCCESS!")
print(f"==== measure the residual b - A*x by |.|_inf")
# r = b - A*xf
r = b_1d - A_csr.dot(xf_wse_1d);
nrm_r = np.linalg.norm(r, np.inf)
nrm_b = np.linalg.norm(b_1d, np.inf)
nrm_x = np.linalg.norm(xf_wse_1d, np.inf)
nrm_A = sparse_LA.norm(A_csr, np.inf)
print(f"|xf| = {nrm_x}")
print(f"|b| = {nrm_b}")
print(f"|A| = {nrm_A}")
print(f"|b - A*xf| = {nrm_r}")
rel_err = nrm_r/(nrm_A * nrm_x + nrm_b)
print(f"|b-A*x|/(|A|*|x|+|b|) = {rel_err}")
# only check the relative error if max_ite is big enough
# i.e. BiCGSTAB converges before reaching max_ite
if k < max_ite:
assert eps > rel_err, "relative error is too large"
if 0:
debug_mod = debug_util(dirname, cmaddr=args.cmaddr)
print(f"=== dump rho with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
for py in range(height):
for px in range(width):
t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'rho', np.float32)
print(f"(py, px) = {py, px}, rho_ij = {t}")
if 0:
print(f"=== dump k with core_fabric_offset_x = {core_fabric_offset_x}, core_fabric_offset_y={core_fabric_offset_y}")
for py in range(height):
for px in range(width):
t = debug_mod.get_symbol(core_fabric_offset_x+px, core_fabric_offset_y+py, 'k', np.int16)
print(f"(py, px) = {py, px}, k_ij = {t}")
if __name__ == "__main__":
main()